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PREFACE

This volume is the third in a series on ‘Sterilization of Medical Products’ that has been produced
from international symposia. The earlier meetings were commemorative and known as the
International Kilmer Memorial Conferences. They were held in the US in 1976 and 1980. Two other
related symposia on ‘Sterilization by Ionizing Radiation’ held in 1974 and 1977, were, as this
Symposium, sponsored by Johnson & Johnson and complement a published series on the subject of
sterilization. All these conferences have enjoyed wide international acceptance and are amongst the
most comprehensive meetings on the subject. The contents of this issue is an edited version of the
proceedings of the meeting held on 4 – 5 November 1982 at The University of New South Wales,
Kensington, NSW, Australia.

The Organizing Committee set out to achieve much the same objectives as those of the earlier
meetings. We made every attempt to follow the very high standard and the pattern and tradition of our
predecessors. The aims were comparable, namely to cover particularly significant emerging
technologies involved in sterilization. We believe that the meeting is integral to the series in
furthering the expansion of knowledge of experts involved in the discipline. We recruited experts in
many new areas of sterilization practice. We hoped to impart some of their expertise to those who are
involved in sterilization practice in Australia and to narrow possible information gaps. It has become
obvious that there is an expanding need in health care to provide ‘sterile’ medical products, and that
sterilization of medical products was receiving an increasing scrutiny by the Federal and State
Departments of Health. We were also conscious of the increasing needs for ‘aseptic care’, and the
protection of critical-care patients against infection. It is very disturbing that infection from
contaminated products continues to remain an important cause of morbidity and mortality in hospital
practice, especially in patients with impaired resistance to microbial invasion. In his summary of the
meeting, Leigh Dodson, Director of the National Biological Standards Laboratory, reaffirmed that the
subject matter of the meeting was of timely interest to people in sterilization practice in hospitals and
industry in Australia. He also said that such symposia not only updated our knowledge, but provided
many opportunities for revision. In particular, he said that the present high standard of health care was
among other things due to clean water, sanitation, and the availability of sterile medical products, and
that these were more important than antibiotics.
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OPENING REMARKS

It is a pleasure for me to welcome you to Sydney on behalf of Johnson & Johnson and its family of
companies. I hope, you will enjoy your stay in this beautiful host city. This Symposium is a
continuation of a series of symposia that have been sponsored over the last several years by Johnson
& Johnson. Being the broadest based company in the health-care business, sterilization has become
extremely important to us. We have many companies manufacturing sterile products around the world,
and we feel a real responsibility and an obligation to foster the study and improvement of the
technology of sterilization.

Since our last meeting in Washinton, D.C., in October 1980, there has been further progress in the
technology of sterilization. It has, perhaps, not been as obvious as advances in bio-technology and
micro-electronics, which captures the attention of the press and have become popular issues.
However, I am sure that those involved in this discipline are well aware that there has been great
progress over the last few years, and we trust that the group of outstanding speakers assembled in
Sydney will cover that progress.

It is a very pleasant occurrence that at this meeting there are many people participating from the
South Pacific. Our initial conferences were held in USA and in Europe, and it is very satisfying that
there is such good representation of the leading people in this part of the world, representing the
pharmaceutical industry, hospital and health-care users, along with the medical devices industry and
those from various government bodies. Your meeting has been structured to cover the progress in the
science itself, standards, equipment, the regulatory trends, and, in fact, the whole picture of progress
in sterilization over the last several years.

It is my pleasure to introduce Eugene Gaughran, the Director of Microbiology and Sterilization
Quality Assurance at Ethicon, Inc., USA, a colleague of many, many years. Gene is a friend of many
years; he has contributed greatly to the progress of sterilization procedures at Johnson & Johnson and
was a prime mover in organizing the first international conference and has been active in all of them
since.

Robert A. Fuller

Office of Science and Technology,
Johnson & Johnson
New Brunswick, New Jersey, USA
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KEYNOTE ADDRESS

Eugene R.L. Gaughran

Ethicon, Inc.
Somerville, New Jersey, USA

Some 30 years ago, for those of us who were sterilizing medical materials, life was quite simple. We
used steam and dry heat only and we sterilized most of our materials by a steam/pressure cycle. With
varying frequency we subjected some of these materials to a standard pharmacopoeial sterility test. If
we were sophisticated, we included in each sterilizer run some of the material contaminated with a
resistant microorganism prior to the sterilization procedure. If no growth appeared in cultures of the
samples subjected to the sterility test, the material was considered sterile and was labelled 100%
sterile.

However, life became more complicated. Two new methods appeared on the horizon, gaseous
ethylene oxide and ionizing radiation. Ethylene oxide permitted the sterilization of materials that
could not withstand steam or dry heat and was rapidly accepted by both hospitals and industry. Its use
gave rise to a multi-billion dollar, sterile, single-use device industry. Ionizing radiation was slower
to be accepted. Although an electron accelerator was used in the late 50s in the United States to
sterilize sutures, it was soon replaced by cobalt-60 irradiation and came into use in the 60s. The first
cobalt-60 plant to sterilize medical products was the British installation at Wantage in 1960, although
the first commercial gamma irradiation plant was the Australian plant at Dandenong, Victoria, built in
1959 for the sterilization of goat hair for the manufacture of rugs.

About this time there were certain medical microbiologists, like Jocelyn Kelsey of the Public
Health Laboratory Service in England, who did not believe 100% sterility could be guaranteed.
There was talk of ‘virtual sterility’ or ‘partial sterility’. An awakening really came when the medical
microbiologists and the aerospace microbiologists discovered the work of the food microbiologists,
who 60 years ago were concerned about thermal death curves, and certainly 40 years ago were
determining the probability of survivors in canned foods.

We recognize today that sterility cannot be tested into a product, and that assurance must be built
into the manufacturing process, of which ‘sterilization’ is but one part. This has led to new
approaches to process development, and process control, and the use of terms like ‘bioburden’ and
‘validation’ and the expression ‘levels of sterility assurance’. It has lead to a better understanding of
good manufacturing practices. All these are the subjects of this Symposium. Such things relating to
sterilization are readily accomplished by a sterile medical products manufacturer, where a product is
produced in large volume, and the composition of a sterilizer load can be standardized. The hospital,
however, has a very difficult problem to follow in the path of industry, but has made great progress inSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



what we now call ‘good hospital practice’ in sterilization.
With progress, there have come processes that provide in many cases an extremely high level of

assurance of sterility. This has raised a number of questions that we will examine during this
Symposium. Do these levels of sterility assurance exceed reasonable limits? Since absolute sterility
is not a reality for medical or surgical materials, what degree or level of assurance of sterility do we
need or do we want? Are those in the commercial world sterilizing products that really do not have to
be sterile? Are there weak links, other than in sterilization, in the delivery of a sterile product to the
patient in the hospital?

The groups charged with protecting the public health, the regulatory agencies, are involved with
commercial sterile products. The regulatory control of such products is an extremely important
subject of this Symposium. The medical and legal aspects, which are of great importance, will also
be examined.

We have made considerable progress recently in the technology of sterilization. The radiation
dose is an area of contention, and we have discovered a potential problem with ethylene oxide
sterilization. There are other subjects still requiring a great deal of attention and research, e.g.
packaging, and we propose to discuss and examine them.

We have been fortunate to have assembled an international array of experts from the medical
profession, academia, government, hospitals, and the medical products industry to address the subject
of Advances in Sterilization of Medical Products.
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SESSION I

Regulatory Aspects
Chairman
Leon E. Harris

Ethnor Pty. Limited
North Ryde, New South Wales, Australia
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SESSION I

Regulatory Aspects
Introduction to Session
Leon E. Harris

There has been an increasing evolution of sterile medical products brought about by the needs of
modern-day health care. This has invited compliance activities by regulatory bodies to define
particular requirements for product use, to assess issues of performance qualification, and after
sterilization processes, to make certain that there are adequate controls to ensure that the product is
sterile. Thus, despite modern-day hygiene, there continues to be an increasing need for sterile medical
products. The responsibility to provide such products rests with the health-care industry and the
responsibility of the health authorities is to supervise generally the discipline.

The regulatory world revolves around pharmacopoeia, national standards, codes of good
manufacturing practice, written guidelines and requirements. Most of what is promulgated is oriented
towards industrial practice which will become evident during this Symposium.

Health-care users generally favour and manufacturers frequently want clear-cut acceptable rules.
This is impractical where sterilization is concerned, so we are beginning to see a trend away from
prescriptive regulations towards guidelines. It is believed that so-called prescriptive regulations tend
to lack flexibility and limit innovation. We have approached the pinnacle of knowledge in
microbiology and with the application of mathematical probability, as well as many new
technologies, we are beginning to see many changes in approach. This phenomenon is coupled with
refinements in the traditional methods.

By and large, the attitude of regulatory bodies has always been framed against a background of
safety involving probability estimates. Inasmuch as sterilization is a probability phenomenon, namely
the probability of eradicating microorganisms, such things as process validation and various
operating controls have become important issues. Sterility assurance levels expressed in logarithmic
powers, e.g. 10−6, when translated is one chance in a million that the product is not sterile. This is the
traditional figure which represents a safety factor that possibly could be varied to apply to different
products depending on their intended use. Pragmatically, all safety factors should be based on
estimates of ‘reasonable’ probability. Use of sterile medical products can never be free of negligible
risk of infection because of the way of their application. Furthermore, it is probably unnecessary and
impractical to sterilize all products in medical use. Thus, sterilization of medical products should beSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



based on safety estimates which should be calculated against a background of community need and a
subsequent risk-benefit ratio, risk factors being expressed as consequence times frequency. It is
pragmatic that with standard sterilization practices there is a probability of one in a million that a
product may not be sterile, but that the chance of infection associated with its use does not occur in
the same ratio. Safety estimates make a lot of sense and these could become one of the challenges to
regulatory bodies who have to define the extent of sterilization practice involving medical product
use.

All other elements of sterilization practice arise out of general principles and practice, such as
process validation, bioburden, biological indicators, dosimeters, and so forth, that are now well
covered by codes of practice. These are the areas where regulatory bodies are best equipped to be
the national custodians, so to speak. Regulatory bodies are also set up to examine and to test medical
products on issues of safety and risk-benefit whether they are sterile or not. Regulatory bodies require
proof of efficacy of a sterilization process, and do not dictate the means that must be used. New
technologies and workable GMP regulations that are to incorporate new technologies, such as dose-
setting strategies in radiation sterilization and assessing the adequacy of the manufacturing controls,
are again some of the new challenges for the regulatory bodies. Manufacturers look to a close
working relationship with regulatory bodies involving good sterilization practice based on scientific
principles.

Single user license provided by AAMI. Further copying, networking, and distribution prohibited.
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Regulatory Review of Sterilization Control in
Australia
Leigh F. Dodson

National Biological Standards Laboratory
Canberra, Australian Capital Territory, Australia

The requirements of the British Pharmacopoeia for individual products, which are the basic standard
for Australia, are very simple. The goods must be sterile and comply with the tests for sterility. These
two requirements are not synonymous. Compliance with a standard sterility test is not sufficient. The
requirement that goods are sterile implies that, when necessary, nonstandard sterility tests may be
used and that methods used to sterilize the goods must be efficient and reliable.

There are some considerations that over the years have guided my approach to this subject. The
principles of sterilization are well-understood and the subject is of immense practical importance, but
it is, with the exception of one university, taught very badly at the undergraduate level in Australia.

Sterilization is not infrequently supervised by individuals in industry whose primary training has
been in organic chemistry rather than in microbiology. These considerations, borne out by our
experience with new graduates, stress the need for each generation to be taught the subject in the work
place. This consideration alone provides a continuing justification for conferences such as the present
one.

My colleagues and I, in establishing the National Biological Standards Laboratory (NBSL) some
twenty-five years ago, came to the subject of sterility and sterilization as ill-informed as most, but
some of us were trained in microbiology and practical statistics and soon realized that the
pharmacopoeial standards of that time were grossly inadequate.

The 1958 BP sterilization procedures and tests make interesting reading these days. In the sterility
test, no sampling schedules were provided, incubation was at one temperature, 37°C, and for only
five days. A product could be failed only if three successive cultures were positive or the same
organism was detected twice. No mention was made of the testing environment, although the media
were pretested for the capacity to grow some common but unspecified organisms. Clearly, only the
heaviest contaminations or a failure to subject the batch to sterilization could be detected by such a
test.

The literature showed that the food technologists had the firmest grasp of the subject and we tried
to build from this basis. I don’t think that we added any original ideas to the field, but at least we
applied other people’s good ideas logically to the regulation of these matters against some
considerable resistance. I recall that Francis Bowman of the US Food and Drug Administration was
responsible for a number of valuable innovations about this time.

Today it is widely recognized that sterilization is firmly based upon an excellent mathematical
model, and requirements derived from this model are now being included in the pharmacopoeias. I
suggest that it needs to be remembered that mathematical models are simplifications of complex
situations, and that the large extrapolations of this model need to be checked against experience toSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



make sure that some factor not represented in the model is operative, or that there has been a
departure from an assumed linearity.

It is now universally accepted that, while any individual item of a batch either does or does not
contain viable microorganisms, it is only possible to make probabilistic inferences about the sterility
of the batch as a whole. The criteria for acceptance of a batch are to my mind social judgments
including many factors, such as a margin of safety to provide for occasional human errors.
Responsible people throughout the world eventually arrive at a consensus for acceptance criteria,
based on long experience. It is for these reasons that regulatory authorities tend to be conservative in
changing the acceptance criteria. Moreover, experience has shown that an error in sterilization
technique may take a long time to be detected.

Another concept now universally accepted is that it is the sterilizing process that provides a
guarantee of safety, not the tests for sterility. Indeed, pressures are developing to drop routine sterility
testing for certain types of products and to substitute more intensive monitoring of the sterilizing
process, as has been done in the case of radiation sterilization. Paradoxically, this will, I suggest,
have the effect of increasing the importance of the sterility tests carried out to validate the sterilizing
process.

A great deal more information about any particular batch of a product is or should be available to
the manufacturer than is available to the regulatory agency. These data include the source of the raw
materials, its bioburden and the variability of the bioburden, the opportunities for contamination to
occur during processing, the thoroughness of the validation carried out for the sterilizing process, the
records of the consistency of the overall process, and so on. Since the Regulatory Laboratory lacks
this information, it should carry out more stringent sterility tests than is required of the manufacturer.

Our regulatory practices are also affected by the limited opportunities we have to influence the
great pharmacopoeias of the world. I believe that the philosophy of the pharmacopoeias should be
altered and no longer include descriptions of manufacturing or sterilizing processes. I suggest that the
pharmacopoeia should be a collection of statutory specifications and not a sort of cookery book for
manufacturers. It is, for both these reasons, that we include guidelines on sterility testing for
manufacturers as an Appendix C to the Australian Code of Good Manufacturing Practice for
Therapeutic Goods (GMP). The guidelines are intended for manufacturers and are based upon, but
differ somewhat from the official test for sterility used by the NBSL.

The Code of GMP is not a statutory document in Australia; it provides criteria used by inspectors
to determine whether a manufacturer should have a licence. While no single provision of the Code is
binding, our inspectors would only accept departures from the requirements of the appendix on
sterility testing, or other requirements of the Code relating to sterilization, if the manufacturer could
prove that his proposed practices are equivalent or better.

The official sterility test is only a requirement for industry when a manufacturer wishes to dispute
the NBSL results in a particular case. In these circumstances, the manufacturer, as a minimum
requirement, must use the official method.

The final generalization I wish to make is that in modern practice the tests for sterility usually
have to detect small numbers of biochemically debilitated microorganisms, and the design of the test
should reflect this.

The official Test for Sterility or Standard, as it is called legally in Australia, is very detailed. It
provides:Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



1. A schedule for the quantity and number of samples to be tested.
2. Precautions to be taken about the environment, equipment, dress, and a restriction that the area

should be exclusively used for sterility testing.
3. A detailed description of the test methods, either by membrane filtration or by direct transfer,

and instructions about sample treatment and for preparing solvents and diluents.
4. Additional tests that must be carried out are:

–   Tests on media – Media are preincubated to check their sterility and each batch, which must
not be more than three months old, is inoculated with specified organisms to check their
growth capacity for small inocula. The same test is carried out on the media after a 14-day
incubation period at the end of the sterility test.

–   Tests for inhibitory substances in the sample – These are carried out by adding some 10 or
20 colony-forming units of specified organisms to the final wash passed through a membrane
filter or by adding the inocula to the sample/media-combination when the method of direct
inoculation is used.

–   Tests on diluents and solvents – These are preincubated and tested for the presence of
inhibitory substances.

–   Negative control tests – Not less than ten items, usually doubly sterilized containers, are put
through the whole testing procedure at intervals during each testing session. These are
incubated with the samples. The purpose of this test is to check the manipulations and the
environment and estimate the number of false positives that occur.

Two media are used; Fluid Thioglycollate Medium is incubated at 32°C ± 2°C, and of the items
inoculated onto Soyabean Casein Digest Medium, one half are incubated at 23°C ± 2°C and the
remainder at 36°C ± 2°C for a period of 14 days. Instruction on the methods for examination of
containers and for subculture etc. are included.

Although the tests for sterility recommended for use by manufacturers are based on the official
test, they differ significantly in various particulars.

Incubation needs to be carried out at only two temperatures, 23°C and 32°C, instead of the three
required in official testing. The sampling schedules are different, being reduced by half if
microbiological indicators are included with the sterilizer load. A distinction is made between goods
that are terminally sterilized and those that are aseptically filled. About half as many again of the
aseptically filled containers must be tested for sterility.

The NBSL places particular emphasis on the value of negative controls and record keeping. To
use an electrical analogy, the negative controls provide a measure of the ‘noise’ of the test.
Examination of our records shows that the frequency of positive tests, not confirmed in a retest, with
some products such as penicillins is much higher than the ‘noise level’. It is suspected that at least
50% of these are examples of real, but very low level, contaminations. The use of records in this
manner by quality control staff is to my mind a reasonably sensitive indication that problems exist. It
also shows that the bias in sterility testing is towards passing contaminated products rather than
failing uncontaminated ones.

I have dwelt on these matters, since our approach differs from some other countries and because
some people think that we have taken a somewhat controversial attitude. This leaves little time to talkSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



about other, probably more important, aspects of the regulatory process. These are inspections of
factories using the criteria in the Code of GMP and evaluation of the sterilizing methods used for new
products.

A GMP inspector has a heavy responsibility and in our experience performs a useful task that is in
the long term advantageous both to industry and to the public. Such an officer has to be well trained
and a previous background in industry is almost essential.

An inspector should check the environment for compliance with the specified requirements for
particulate matter, surface textures, and the like. Double-barrier systems must be used for aseptically
filled products and appropriate air pressure differentials maintained. Equipment must be regularly
calibrated, including such objects as pressure gauges, temperature probes, filters in laminar flow
cabinets, and UV lamps, etc. The personnel must be properly trained in the procedures used (the
NBSL has assisted in the training of key personnel from time to time). The inspectors also check that
the sterilizing process has been properly validated during the development stages for the product and
that periodic checks are made on the bioburden. The heat distribution and penetration during steam
sterilization must also be periodically checked. There are also requirements for written procedures
for key processes. These matters are outlined in the Australian Code of GMP.

The evaluation of sterilizing processes for new products developed overseas is a somewhat
unsatisfactory process, that may be compared to carrying out an inspection by correspondence. It is
neither convenient, nor efficient, but this is the penalty we pay. Products that do not meet the accepted
minimal standards will not receive approval for marketing. I believe, the criteria used in Australia
are pretty much the same as those used in other countries such as the US and Canada.

The misgivings I have about the regulatory processes in Australia relate to three matters. The
resources for enforcement are in my opinion inadequate. I have a suspicion that a number of
manufacturers have items submitted to gamma radiation sterilization without an evaluation of the
bioburden of the product and a validation of the method for the particular product, and do not carry
out sterility tests. Finally, there is an uncritical acceptance of the quality of biological indicators by
some companies. The products received at the end of a very long distribution chain in Australia have,
in the few cases in which we have tested them, either failed to grow on incubation or could not be
sterilized by standard sterilizing cycles. Some companies, I observe, feel compelled to manufacture
their own biological indicators.

The regulatory controls briefly outlined are the product of many years’ consideration and debate
by government officers, quality control managers in industry, and microbiologists from the clinical
and academic fields and the examination of practices in other countries. The controls have changed
much during this time and no doubt will change again in the light of our experiences and the practices
followed in other countries.
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Regulatory Review of Sterilization Control in the
United States
Richard J. DeRisio

National Center for Devices and Radiological Health,
US Food and Drug Administration
Washington, District of Columbia, USA

The role of the sterilization technologist in a regulatory agency such as the Food and Drug
Administration (FDA) is different from that of one in the industry. We do not have laboratories or
manufacturing facilities in which to carry out experimental studies. Rather, we must be satisfied with
the vicarious experience of recommending and monitoring experiments performed on our behalf by
FDA’s field laboratories. A symposium such as this one offers a regulator a valuable opportunity to
learn about emerging sterilization technology from both formal presentations and informal
conversations. On the other hand, regulatory and product safety concerns can be discussed with those
having practical experience in areas including bioburden control and monitoring, residue dissipation
and analysis, process uniformity and control among others.

Working in the FDA provides one with a broad perspective of the entire medical products
industry. Although we have exposure to the level of science and medicine advocated by the
participants in this Symposium, we see also in sharp contrast a segment of the industry that has much
less interest in promoting public health, let alone complying with the Agency’s Good Manufacturing
Practices (GMP) regulations. We observe practices that would be considered unthinkable and
perhaps unbelievable. Therefore, in developing compliance programmes and in establishing policies
regarding medical product sterilization, we must take all segments of the industry into consideration.
Accordingly, some FDA policies may appear too restrictive, perhaps even naive, to a large
sophisticated manufacturer.

The aim of a regulatory professional should be to establish policies that provide adequate control
to protect the public health, and yet ones that are not so rigid as to stifle new developments in science,
medicine, and technology. Companies that are willing to invest in research in the health sciences
should be able to make practical applications of their findings without undue regulatory burden. This
approach is consistent with the current Presidential Administration’s Mandate for Regulatory Reform.

In the area of sterilization, the Office of Medical Devices had traditionally sought to encourage the
adoption of new technology in device manufacturing. For example, alternatives to finished deviceSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



sterility testing are permitted as a means of product release. Companies may replace all or part of
their device sterility testing with biological indicator monitoring, use of inoculated products or a
system of dosimetric or process-control release. These provisions pertain even to those devices, such
as sutures and gauze bandages, for which there is a United States Pharmacopeia (USP) monograph
requiring that sterilized items must meet the requirements of the USP Sterility Test.

The Office of Medical Devices notes that the sterility test section of the USP states that
‘alternative procedures or procedural details may be employed to demonstrate that an article is
sterile, provided the results obtained are at least of equivalent reliability’. Furthermore, the USP text
states that ‘no sampling plan for applying sterility tests to a specified proportion of discrete units
selected from a sterilization load is capable of demonstrating with complete assurance that all of the
untested units are in fact sterile’.

It is recognized that quality, in this particular case sterility, must be designed into the product
through a comprehensive validation and quality assurance programme, and not be tested into the
product by means of one finished product test involving a small number of units. In fact, the USP
states that process validation studies and the use of in-process controls may provide a better
assurance that an item meets a particular compendial requirement than the test itself, where that test is
performed on a sample of a few discrete units.

The GMP for Medical Devices requirement for finished device inspection, 21 CFR 820.160,
states that ‘prior to release for distribution, each production run, lot, or batch shall be checked and
where necessary tested for conformance with device specifications’.

We believe that a firm choosing to use an alternative ‘check’ such as biological indicators or
dosimeters in lieu of an actual finished product test for sterility does meet the intent of this GMP
requirement.

The current position of the Office of Medical Devices in this matter is based in large part upon the
findings and recommendations in the evaluation report of the fiscal year 1976 (FY76) Device
Sterility Compliance Program. It was found that nonsterile devices could not be reliably detected
unless the percentage of nonsterile units was relatively high. Among lots tested in FY 76, the lowest
percentage of nonsterile lots detected by a USP test using 40 samples was 21.7%, far above the one
in one million probability that represents the minimum sterility assurance level desirable for many
sterilized medical products. Moreover, the chance for an accidental laboratory contamination, if
assumed to be once in every 2000 tests, was much higher than the 10−6 level sought as a minimum for
parenteral and other invasive devices.

Of a total of 82 samples (40 per sample) of devices tested in FY 76, 87% were found to be sterile
as tested. In 10% of the cases, the conclusion was equivocal, that is, there were positive samples on
the initial test, but none on the retest. In these cases, use of the most probable number (MPN) equation
of Halvorsin & Zigler estimated the levels of nonsterility to be in a range of 2.5 to 4.0% nonsterile. In
the cases where a check analysis clearly demonstrated nonsterility not occurring as a result of
adventitious laboratory contamination, the levels of nonsterility in the lots were estimated to be
21.7%, 53.3%, and 72.2%.

As part of the FY 76 evaluation, the probabilities of detecting nonsterility in a lot using the USP
test were calculated and tabulated. Table 1 demonstrates that a forty-unit sample using twenty samples
in each of the two prescribed media can reliably detect nonsterility only if the proportion of
nonsterile units in the lot is very high. For example, if the particular contaminating organisms wereSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



fastidious and could grow on only one of the two media, then in order to be sure 95 times out of 100
that nonsterility would be detected, the lot would have to contain 13.9% nonsterile units, or almost
1400 nonsterile units in a sterilizer load of 10 000 devices. Clearly, this level would not be expected
unless there had been a major cycle malfunction. Moreover, the table indicates that 5 times out of 100,
the 13.9%would go undetected in a forty-unit sample, assuming the organism would grow on only one
of the two media.

Table 1
Nonsterile units that may be present in a lot and not be detected in a given sample size

Sample size Growth characteristics of contaminating microorganisms

Total units tested Units in each test medium Both media Only one medium
0.5* 0.05* 0.5* 0.05*

10 5 6.7%** 25.9% 12.9% 45.1%
20 10 3.4% 13.9% 6.7% 25.9%
30 15 2.3% 9.5% 4.5% 18.1%
40 20 1.7% 7.2% 3.4% 13.9%
50 25 1.4% 5.8% 2.7% 11.3%
60 30 1.1% 4.9% 2.3% 9.5%

  * Probability of sample containing no nonsterile units.
** Percentage of nonsterile units.

Consequently, FDA investigators are instructed that collection of samples of finished devices for
sterility testing is nonproductive unless it is apparent that the sterilization process cycle, equipment,
or controls are seriously deficient. Collection of finished devices would be indicated in a situation
where the sterilization process was based upon product bioburden and inspection evidence indicated
that actual bioburden levels were likely to be considerably higher than those upon which the process
was based originally.

It became clear to the Office (then Bureau) of Medical Devices that it would be worthwhile to
promote process validation including equipment and cycle qualification and overall production
quality assurance, rather than sterility testing, as a better means to ensure that an acceptable sterility
assurance level is reliably maintained. As a result, one of the recommendations of that compliance
programme evaluation was to develop a GMP regulation for sterile devices. The Office of Medical
Devices has determined, however, that it is more effective working with other health professionals
through organizations such as the Association for the Advancement of Medical Instrumentation
(AAMI) to develop voluntary guidelines or standards of practice that deal with sterilization
operations in detail. Of course, the umbrella GMP regulation is applied to a sterile manufacturing
operation in a manner appropriate for the particular device inspected.

I would like to present some background regarding FDA activities. FDA performs inspections of
foreign medical product manufacturers and clinical laboratories. The Federal Food, Drug, and
Cosmetic (FDC) Act, as amended, stipulates that we have jurisdiction over interstate commerce.
Trade between the US and a foreign country meets that definition, as does that between states, orSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



between a state and the District of Columbia or a US territory. Moreover, this Act states a
requirement that manufacturers of drugs and Class II and Class III medical devices must be inspected
every two years. Class II and Class III devices are those judged to require a performance standard
and a premarket approval (PMA) application, respectively. For Class III devices, the PMA process is
analogous to the New Drug Application (NDA) procedures for certain drugs. Class I devices are
those subject only to general controls such as registration, listing, notice of intent to market the
device, conformance with the GMP regulation site inspections, labelling, record keeping, and certain
other FDA regulations.

Table 2 summarizes the FDA’s foreign inspection activity by product types for the last three fiscal
years ending 30 September 1982.

Table 2
FY 80 FY 81 FY 82

Drugs subject to an NDA 121 82 84
Antibiotics (Form 5/6) 82 50 39
Medical devices 70 79 85
Clinical laboratories    17      7      2   

Totals 290 218 210

It is noteworthy that we hope to accomplish 150 inspections of foreign medical device firms in FY
83. In contrast, the total number of domestic and foreign inspections of medical device establishments
was 1403, including 206 manufacturers of sterile devices. Foreign firms are evaluated under the same
inspection programmes as are domestic firms. The investigators are part of an experienced cadre of
personnel who are periodically detailed from their US inspectional work to perform four- or five-
week foreign inspection assignments. Inspections of US firms are unannounced; in contrast, foreign
firms are contacted several weeks in advance to request permission to inspect their facility. The FDC
Act does not grant authority to perform unannounced inspections in foreign countries. These
preliminary contacts are necessary also in order to establish a very tight inspection and travel
schedule for the investigator on foreign assignment. During my two- year tenure as Assistant Chief of
the Foreign Inspection Staff, I know of only one instance wherein FDA was not granted clear
approval to inspect. In fact, no reply was received from the firm. Shortly thereafter, an investigator on
another assignment visited the same city in which the nonresponding firm was located and determined
that the site was only a distribution centre. In this case, products imported by that company were
detained by the US Customs officials until the actual device manufacturing site could be identified
and inspected. Following a domestic or overseas inspection, a firm with minor GMP deficiencies
may be sent a Notice of Adverse Findings (NAF) Letter. For more serious violations, however, the
regulatory follow-up for US firms, as prescribed by the Act, is different from that permitted against
manufacturers of products imported into the US. In the US, the FDA may seek, through the courts, to
seize unsafe or ineffective products, or prevent (enjoin) a manufacturer from producing potentially
unsafe or ineffective products. On the other hand, our recourse against a foreign firm found to be out
of control with respect to GMP compliance and product performance is to detain the product at the
point of entry into the US (in co-operation with US Customs or Postal Service) and thus prevent itsSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



interstate distribution into the US.
In its regulatory control of sterilization in the US, FDA has always required evidence of process

efficacy and equipment reliability for regulated products that are purported to be sterile. The GMP
regulation for low-acid canned foods (LACF), Code of Federal Regulations, Title 21, Part 113 (21
CFR 113), published in 1973, specifically requires proof that the scheduled process cycle is effective
in assuring that no container is contaminated with viable cells of Clostridium botulinum, and also
that there are no surviving organisms that could lead to economic spoilage under the normal
conditions of storage.

This regulation also requires that the persons who establish such cycles and also those who
evaluate process cycle deviations have suitable training and experience. Requirements for
qualification of the process equipment and calibration of the measurement and control systems are
clearly described. The regulation prescribes specific equipment designs and operating procedures for
the chambers (retorts) used to process low-acid canned foods. For installations different from those
in the regulation, heat distribution data must be kept on file demonstrating uniformity of temperature
distribution and adequacy of venting. It was the National Canners Association, now National Food
Processors Association (NFPA), that originally petitioned the Agency to adopt a regulation that was
identical not only with the code of practice used by their members, but also with the canning
regulation enforced by the State of California. Although highly technical, the LACF regulation was
implemented quite easily because it was practicable and represented the state of good industry
practice at that time. Within a few years, the regulation effected a substantial increase in the industry
level of compliance, particularly among those firms that previously had not followed any code of
practice. FDA continues to work closely with NFPA, particularly in co-ordinating the follow up to
health-threatening food hazards involving their member firms.

In 1976, FDA published a proposed GMP regulation for large volume parenteral (LVP) drug
products for human use (Federal Register, Vol. 41, p22202, i.e. 41 FR 22202). In the preamble to that
proposal, it was made clear that the proposed LVP regulation would supplement the more general
GMP provisions of 21 CFR 210 and 211. The comments received by FDA concerning this proposal
stated that it was over restrictive and, in some respects, impossible to implement reasonably. This
proposed regulation is still officially under review with the likelihood that some portions will
eventually be published as regulations or guidelines. Several provisions of the proposal, however, do
reflect current industry practice for LVP manufacturing and define a baseline for FDA expectations
regarding the manufacture of parenteral drugs. It is difficult for a regulatory authority to promulgate a
detailed technical regulation without input from those with current practical experience.

In 1978, FDA promulgated a GMP regulation for the manufacture, packing, storage, and
installation of medical devices (43 FR 31508). The device GMP regulation is an ‘umbrella’
regulation applicable to all medical device manufacturers. In view of the diversity of manufacturing
processes and finished product types, it was recognized that the regulation should not be so specific
as to prescribe the precise details of how each firm must manufacture its devices. Rather, the GMP
regulation contains general requirements in specific areas of concern applicable to all manufacturers
who then develop procedures that not only fulfil GMP requirements, but also are appropriate for their
particular device.

I believe, it would be worthwhile to discuss the applicability of this GMP regulation to sterile
devices. The preamble to the final order (43 FR 31508) contained this statement: ‘The Food and DrugSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



Administration (FDA) expects to publish additional GMP regulations applicable to specific types of
devices. These future regulations will supplement the “umbrella” GMP regulation and will be of two
types: One will contain requirements that will apply only to generic types of devices or classes of
devices, e.g., pacemakers, eyeglasses, etc.; the other will contain requirements that will apply to
certain devices or cross-class characteristics or processes, e.g., sterile devices, plastics, electrical
properties, etc.’

It has been suggested by some individuals that the above wording implies that sterile devices
should not be regulated under the umbrella GMP regulation. Yet, using the same rationale, this line of
reasoning could be extended also to all plastic devices and all devices with electrical properties. The
above wording clearly states that these future regulations would supplement the umbrella GMP
regulation.

It was never the intent of Congress or FDA to exclude sterile devices (or those made from plastic
or those having electrical properties) from GMP controls. Moreover, the general provisions subpart
of the GMP regulation in the selection on Scope (21 CFR 820.1) states: ‘The regulation set forth in
this part describes current good manufacturing practices for methods used in, and the facilities and
controls used for, the manufacture, packing, storage, and installation of all finished devices intended
for human use.’

The wording ‘of all finished devices’ does not exclude devices that are sterilized. In fact, this
section (Scope) goes on to exclude specifically those devices that were not intended for coverage,
and sterile devices were not among those excluded. Section 820.3(j) defines a ‘finished device’ as ‘a
device, or any accessory to a device, which is suitable for use, whether or not packaged or labeled
for commercial distribution’. Sterile devices are not excluded from this definition.

An example of the Bureau’s commitment to the application of the device GMP regulation to sterile
devices is the fact that no manufacturer of a sterile device (even one that is Class I) has been
exempted from the device GMP regulation. The final classification order for patient examination
gloves (21 CFR 880.6250, 45 FR 69723) contains the statement that ‘if the device is not labeled or
otherwise represented as sterile, it is also exempt from the good manufacturing practice regulation in
Part 820, with the exception of Section 820.180, with respect to general requirements concerning
records, and Section 820.198 with respect to complaint files’.

Other examples of this reasoning can be found in classification orders for haematology and
pathology devices, among others. Moreover, the Division of Compliance Programs has developed a
guideline for the application of the umbrella GMP regulation to a sterile device manufacturer. This
document is included as an attachment to the Compliance Program Circular that is used to guide the
investigator during the inspection of a sterile device manufacturer.

In summary, the Bureau has always intended that sterile devices be covered by the GMP
regulation. The concept of developing a separate supplemental regulation for sterile devices (and
other ‘cross-class characteristics’) evolved during a period when the Agency was moving toward
promulgation of product-class specific regulations that were intended to supplement the umbrella
GMP regulations. Examples include the low-acid canned food regulation, the acidified foods
regulation, and the proposed large volume parenteral regulations. However, the Agency is now
adopting alternatives to such regulations that may have less impact on the regulated industry but still
attain the goal of protecting the public health. An example of one such alternative is the Guideline for
Industrial Ethylene Oxide Sterilization of Medical Devices, a recommended practice of theSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



Association for the Advancement of Medical Instrumentation (AAMI). A subcommittee that included
representatives of industry, the academic community, consulting firms, equipment manufacturers,
several professional associations, and FDA collaborated on the final drafts of the AAMI guideline.
As a result, this document represents a consensus guideline of good practices for the design,
validation, and control of ethylene oxide (EO) process cycles.

The FDA cannot recognize the AAMI document as an official guideline or regulation, because it
was not developed in accordance with the Administrative Practices and Procedures Regulations of
the FDA, in particular with respect to publishing such documents in the Federal Register for public
comment. Nonetheless, the extent of FDA participation is well known and FDA’s Office of Medical
Devices (OMD), formerly the Bureau of Medical Devices (BMD), considers firms following the
AAMI guidelines to be meeting the GMP regulation requirements for validation and process control
of their EO sterilization operations. AAMI has invited FDA input on other guidelines and standards
including, for example, those for steam sterilizers and biological indicators.

I would now like to detail a brief overview of the strategy used to evaluate a manufacturer’s level
of compliance with the GMP regulations.

The Agency is preparing to publish a guideline intended to outline general concepts and key
elements that FDA considers to be acceptable parts of process validation associated with the
manufacture of drug products and medical devices. The introduction to a recent draft of the guidelines
states: ‘This guideline discusses process validation elements and concepts that are considered by the
FDA as acceptable parts of a validation program. The constituents of validation presented in this
document are not intended to be all inclusive. The Agency recognizes that because of the great variety
of medical products, processes, and manufacturing facilities, it is not possible to state in one
document all of the specific validation elements which are applicable. Several broad concepts,
however, have general applicability and provide an acceptable framework on which firms may build
a comprehensive approach to process validation based upon the needs of each situation.’

An FDA guideline states principles and practices of general applicability that are not legal
requirements but are acceptable to the Agency. A person may rely upon the guideline with the
assurance of its acceptability to FDA, or may follow different procedures. When different procedures
are chosen, a person may, but is not required to, discuss the matter in advance with FDA.

It is through careful design and validation of both the process cycle and process controls that a
manufacturer can assure that there is a very high probability that all manufactured units from
successive lots will be acceptable. This objective reduces the dependence upon intensive in-process
and finished product testing. Reliable process control also lowers costs by reducing the proportion of
defective finished products that must be scrapped or reworked.

The AAMI EO guideline contains a definition of validation as a documented programme to
demonstrate that a specified product can be reliably sterilized by the designed process.

The definition implies the need to maintain records demonstrating that from run to run, a particular
product will be sterilized by a cycle originating from a suitable data-based design.

A validation protocol should be developed which calls for a sufficient number of replicate
process trials in order to demonstrate reproducibility. The number of trials should be selected so as
to provide a statistically valid measure or variability among successive runs and include worst-case
challenges to the process.Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



The basic concept of validation is inherent throughout the current GMP Regulations for Finished
Pharmaceuticals, 21 CFR 210 and 211. A general requirement for process validation is contained in
21 CFR 211.100 – Written procedures; deviations – which states in part that ‘there shall be written
procedures for production and process control designed to assure that the drug products have the
identity, strength, quality, and purity they purport or are represented to possess’.

Several sections of the Code of GMP regulations state validation requirements in more specific
terms. Excerpts from some of these sections are:

Section 211.110, Sampling and testing of in-process materials and drug products.
(a) ‘… control procedures shall be established to monitor the output and VALIDATE the
performance of those manufacturing processes that may be responsible for causing variability in
the characteristics of in-process material and the drug product.’ (emphasis added)

Section 211.113, Control of microbiological contamination.
(b) ‘… Appropriate written procedures designed to prevent microbiological contamination of
drug products purporting to be sterile, shall be established and followed. Such procedures shall
include VALIDATION of any sterilization process.’ (emphasis added)

Section 211.165, Testing and release for distribution.
(e) ‘… The accuracy, sensitivity, specificity, and reproducibility of test methods employed by
the firm shall be established and documented. Such VALIDATION and documentation may be
accomplished in accordance with Section 211.194(a)(2).’ (emphasis added)

A requirement for process validation is inherent in the medical device GMP regulation, 21 CFR
820. Section 820.5 requires every finished device manufacturer to ‘prepare and implement a quality
assurance program that is appropriate to the specific device manufactured’. Section 820.3(n) defines
quality assurance as ‘all activities necessary to verify confidence in the quality of the process used to
manufacture a finished device’.

Process validation is the major activity used to provide confidence that a process will
consistently produce a product meeting the designed quality attributes.

A general stated requirement for process validation is contained in Section 820.100: ‘Written
manufacturing specifications and processing procedures shall be established, implemented, and
controlled to assure that the device conforms to its original design or any approved changes in that
design.’

Validation is an essential element in the establishment and implementation of a processing
procedure, as well as in determining what process controls are required in order to assure
conformance to specifications.

Section 820.100(a)(1) requires that ‘procedures for specification control measures shall be
established to assure that the design basis for the device … is correctly translated into approved
specifications’.

By establishing procedures for sterilization process validation, a manufacturer assures that the
design criteria defining a particular sterility assurance level for the device will be reliably achieved
in production. In addition, Section 820.100(b)(1) states that ‘where deviations from device
specifications could occur as a result of the manufacturing process itself, there shall be written
procedures describing any processing controls necessary to assure conformance to specifications’.Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



In addition to requiring that there be effective controls for process variables, this section also
implies a requirement for periodic revalidation for such operations as sterilization, particularly upon
the initiation of significant changes in the process, equipment, product, or package.

In response to several inquiries from small manufacturers, OMD has prepared a draft document
entitled ‘Adopting a Medical Device Into a Validated Sterilization Cycle’. This practice has been
used by firms that market sterile hospital trays whose components change for custom orders. These
items may be sterilized without revalidating the process cycle. Such decisions are based on scientific
judgment and can be simplified if the original validation studies are performed on worst-case product
types and load configurations. The adoption document permits very small manufacturers whose
monthly output might not comprise one pallet load to select a process cycle that is adequate for the
device without incurring a validation cost that would be excessive. Adoption of a device into a
previously validated cycle relies on assumptions that the physical and microbiological characteristics
of the adopted device and packaging are very similar to the parent load. For EO processing, it might
be necessary to adopt the device into a cycle that included a rigorous external preconditioning to
ensure that the lethality delivered to the cartons of adopted devices was achieved at a rate
comparable with that of the parent load.

The following is a brief overview of the strategy used to measure a device manufacturer’s level of
compliance with the GMP regulations and to evaluate a company’s state-of-control for sterilization
and related activities.

The FDA Compliance Program 7378.008 entitled Inspection of Medical Device Manufacturers
provides guidance to the FDA field staff for the enforcement of the requirements of the GMP
regulation and applies to all devices including those labelled ‘sterile’. The objectives of the current
programme are:

1. To identify domestic and foreign manufacturers who are not operating in a state-of-control.
2. To bring such manufacturers into a state-of-control through voluntary or regulatory means as

appropriate.

The programme defines state-of-control by noting that when manufacturing is organized in a way
which enables a device manufacturer to have full mastery over the attainment of quality of
conformance, the device manufacturer is said to be in a state-of-control.

It is the manufacturer who is responsible for developing a suitable QA system that is appropriate
for the device and meets GMP requirements. The issue of flexibility is reiterated in the following
portion of the programme text:

‘The FDA intends to measure GMP compliance in light of this discretion and flexibility
accorded the manufacturer. Therefore, the investigator should not approach the inspection with the
expectation that a manufacturer is rigidly and absolutely in compliance with each GMP
requirement since each requirement is both general and objective in nature. The investigator
should expect to find situations where a manufacturer has tailored the quality assurance program
to his particular needs after taking into account such factors as necessity of a procedure, or the
uniqueness of a device or component … Each variation from the GMPs needs to be carefully
examined in terms of its impact on the fitness for use of the finished device.’

The recognition of flexibility is clear and supports the idea that FDA discourages formal variance
Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



petitions. Instead, manufacturers choosing to meet a GMP requirement through a means other than that
explicitly stated in the regulation must satisfy themselves that safety and efficacy will be attained, and
then be prepared to support their variation if questioned by the investigator.

Class II and Class III device manufacturers are inspected every two years, as a statutory
requirement imposed upon FDA by Congress in the FDC Act. Companies are scheduled for coverage
using a computer program that alerts FDA district offices that particular companies are due for their
biennial reinspection. There may be follow-up inspections within the two-year period as dictated by
a company’s state of compliance. Manufacturers of Class I devices are not inspected on a biennial
schedule unless the device is sterilized or marketed for sterilization by the user (in which case the
device would not be exempt from the GMP regulation). Also Class I devices may be inspected as a
result of a specific BMD assignment, or if there is a problem with the device.

The investigator’s inspection is called a ‘quality audit’ and is guided by a Quality Audit
Worksheet, a portion of which is reproduced below:

820.61 MEASUREMENT EQUIPMENT

23A. All QA and production measurement equipment is routinely checked, calibrated, and inspected according to
written procedures. NDN D A N/A

23B. Records documenting these activities are maintained. NDN D A N/A

23C. When automated production or quality assurance systems are used, programs are validated by adequate and
documented testing. NDN D A N/A

23D. All program changes are made by a designated individual(s) through a formal approval procedure.
(a) Calibration procedure NDN D A N/A

24A. Calibration procedures include specific directions and limits for accuracy and precision. NDN D A N/A

24B. There are provisions for remedial action when accuracy and precision limits are not met.
(b) Calibration standards NDN D A N/A

25.
All production and quality assurance measurement equipment are calibrated using traceable standards, i.e.
traceable to: (1) an NBS standard, (2) an independent (not in-house) standard, or (3) an in-house standard.

(c) Calibration records
NDN D A N/A

26A. The calibration date, the calibrator, and the next calibration date are recorded and displayed, or records containing
such information are readily available for each piece of equipment requiring calibration. NDN D A N/A

26B. A designated individual(s) maintains a record of calibration dates and of the individual performing the calibration. NDN D A N/A

This section pertains to calibration, an important aspect of sterilization process development,
validation, and control. In responding to questions on the Quality Audit Worksheet, the investigator
marks the question: ‘NDN’ if there was No Deficiency Noted; ‘D’ if that area was Deficient; ‘A’ if
there was a total Absence of compliance with the pertinent section; and ‘N/A’ if the question was Not
Applicable for the particular device and manufacturer being inspected. Unlike the original Worksheet,
the new version has a provision for the ‘N/A’ response after every question, thereby permitting and
fostering an attitude of flexibility in applying the GMP regulation.

At the conclusion of the inspection, the investigator is required to issue a list of inspectional
observations, the Form FD 483, if he or she has marked any responses ‘Absent’ or ‘Deficient’. The
investigator, during the exit discussion with management, will ask the company to describe the
corrective action management intends to take to correct the observed deficiencies, discuss the
timetable for the promised correction, and clarify any questions regarding the GMP regulation
deficiencies.

The purpose of the Worksheet is to:
1. identify the specific requirements of the GMP to assure that the audit covers all applicable
Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



sections of the regulation;
2. guide the flow of the audit, since the inspection should be conducted not in the order of GMP

sections, but along sensible lines which expose the investigator first to the device master
record, then to complaint files, and so on;

3. assist the investigator in identifying deviations from the GMP regulation and communicating
them to management;

4. provide a framework for the orderly receipt and retrieval of data essential to programme
evaluation; and

5. foster uniformity and consistency by providing a text for the reporting of deviations.

Table 3
Compliance indices by firm size and type of device manufacturer firms receiving initial GMP
inspection in Fiscal Year 1981

Type of firm Firm size
All 1-10 11-50 >50

ALL
  N* 762 336 225 201
  ** 87 82 88 93
  SD*** 16 19 15 10
CRITICAL
  N 71 24 20 27
  88 82 87 95
  SD 17 20 18 9
NONCRITICAL
  N 559 254 166 139
  86 82 87 93
  SD 17 19 16 11
IN VITRO DIAGNOSTIC
  N 132 58 39 35
  90 84 94 97
  SD 15 20 7 5

  N* = Number of firms
  ** = Mean
  SD*** = Standard deviation

In order to compare levels of compliance between firms, for different inspections of the same
firm, among different products, and so on, a Compliance Index was developed. The Compliance
Index is expressed as a percentage and is calculated by assigning different point scores for each
response received on the Worksheet. This Index, while useful for tabulating and expressing the data,Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



has shortcomings that are clearly recognized by the Bureau. In particular, it does not give more weight
to those GMP requirements that could have a greater impact upon safety and efficacy. Also, the
number of questions used on the Worksheet to evaluate compliance with a particular GMP
requirement affects the weighting of the Index. The evaluation report notes that ‘differences between
various Compliance Indices does not necessarily mean that the quality of one firm’s product is any
better or worse than another’s product’.

In fiscal year 1981, 1403 medical device manufacturers were inspected under the GMP
compliance programme. Table 3 summarizes the findings for 762 of the companies that underwent
their first GMP inspection. Accordingly, there was a higher proportion of smaller companies than is
actually represented in FDA’s entire inventory of medical device manufacturers.

Table 4
Compliance indices by firm size and type of device manufacturer Second biennial GMP inspection

Type of firm Firm Size
All 1-10 11-50 >50

ALL
  N 641 182 195 264
  94 89 94 96
  SD 10 13 8 6
CRITICAL
  N 76 13 16 47
  94 86 96 96
  SD 8 15 6 4
NONCRITICAL
  N 433 125 130 178
  94 89 94 96
  SD 10 13 8 6
IN VITRO DIAGNOSTIC
  N 132 44 49 39
  93 89 94 96
  SD 10 13 7 5

The remaining 641 companies had been inspected for the first time under this programme in FY 79
and thus the FY 81 GMP inspection was their second. The inspection findings for these companies
are shown in Table 4. There were more large firms (750 employees) in this latter group, because the
initial inspection model called for visits to large manufacturers before smaller ones with some
adjustments for type of device manufactured (critical vs. noncritical), or the history of device
problems.

The salient inspection findings from Tables 3 and 4 can be summarized as follows:
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1. The average ( ) compliance index (CI) for firms that received their second GMP inspection in
1981 (biennial follow-up) was higher than that for firms receiving their first GMP inspection
(94 vs. 87).

2. There was no significant difference in CI among manufacturers of critical, noncritical, and in
vitro diagnostic products (IVDP) within each table: first GMP inspection – 88, 86, 90; second
– 94, 94, 93.

3. The CI for large firms (750 employees) is higher than that for the smallest firms (1-10): Table 3
– 93 vs. 82; Table 4 – 96 vs. 89.

4. The variability in CI (SD) among manufacturers is (a) lower for larger firms, e.g. in Table 3, 10
vs. 19; and (b) is lower after a second GMP inspection, e.g. 16 in Table 3 vs. 10 in Table 4.

Of the 641 companies that received their second GMP inspection in FY 81, 90 had received yet
another follow-up visit between those two inspections, most likely to review corrections made to
objectionable conditions observed during the original FY 79 inspection. An analysis of these firms is
shown in Table 5 and demonstrates that the 90 firms receiving an intermediate inspection had a
significantly lower CI (83) than that (88) for the firms that were not reinspected since FY 79. A
comparison of the CIs for the two groups of companies at the second GMP inspection (the biennial
reinspection) indicates that there is no significant difference between the mean CIs (94 vs. 93). These
data suggest that an intermediate follow-up inspection of firms having considerable GMP
deficiencies may be an effective means of raising their level of compliance. Note also that variability,
as measured by the standard deviation (SD), was also reduced significantly following an intermediate
follow-up inspection.

Table 5
Extent of improvement in compliance indices

Firms not receiving an intermediate
inspection

Firms receiving an intermediate
inspection

Number of Firms 551 90
Initial GMP inspection
  88 83
  SD 14 17
Second biennial GMP
inspection
  94 93
  SD 10 9
Delta (CI second biennial GMP inspection minus CI initial GMP inspection)
  6 10
  SD 13 16

One can suggest possible explanations for the observation that smaller firms have a lower mean
Compliance Index:Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



1. small firms, if newer, have not been inspected as many times and thus have less opportunity to
evaluate compliance;

2. the small staff size precludes having an individual responsible full-time for GMP conformance;
3. resource limitations prevent participation in GMP training programmes;
4. small firms may be reluctant to confront FDA regarding a difference of opinion or to ask for

guidance.

The data have not resulted in FDA having a predisposition against smaller firms because their
mean Compliance Index is lower. Nonetheless, the Agency maintains that it shall not have a double
standard that permits a lower level of conformance to GMP requirements for small firms than for
large firms. To assist small firms in complying with the GMP regulation, the Office of Small
Manufacturers Assistance provides guidance through workshops, telephone and memo
correspondence, a newsletter, and on-site visits.

The most frequently cited problem areas among inspected companies include:

1. failure to audit properly the QA system for conformance with GMP regulations;
2. deficiencies in the device master record,
3. deficiencies in calibration procedures.

It was found through an analysis of the data that firms not performing audits of their quality
assurance systems are much more likely to be deficient in many other areas of the GMP regulations
than firms routinely performing audits. A similar correlation is found between low overall GMP
compliance and deficiencies in the device master record and/or device history record.

Manufacturers of sterile devices are inspected under the overall GMP compliance programme and
also under an addendum designed to direct inspection of sterile device manufacturing systems. This
programme supplement provides a data collection form that is used to ensure complete and consistent
coverage of sterilization processes worldwide. Two pages of that form are shown in the Appendix as
examples. One, entitled ‘Cycle Parameters’ is a page from the section on EO sterilization; the other is
one of the pages pertaining to process validation. Copies of the entire 21-page worksheet as well as
other GMP and sterility materials may be obtained from the FDA Office of Small Manufacturers
Assistance in Silver Spring, Maryland.

The following is a summary of a portion of the findings for the 206 sterilization processes
reviewed within the 1403 GMP inspections that were accomplished:

— Types of sterilization processes used:
  Ethylene oxide (EO) 129 (63%)
    12% EO/88% Freon* carrier 75 (36%)
    100% EO 32 (16%)
    Miscellaneous EO processes 9 ( 4%)
    EO processes, type unknown 13 ( 6%)
  Steam 46 (22%)
  Radiation (cobalt 60) 17 ( 8%)Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



  Miscellaneous 14 ( 7%)

* Trade Mark

— Location of the sterilization process:
  At the manufacturing site 138 (67%)
  At a contract sterilizer 56 (27%)
  At another company site 4 ( 2%)
  Unknown 7 ( 4%)

— By sterilization type:
EO Steam Radiation Other

  At the manufacturing site 61% 87% 35% 100%
  At a contract sterilizer 34% 2% 65%
  At another company site 2% 2%
  Unknown 2% 9%

— Method of product release used by firms reviewed for their evaluation:
  Biological indicator testing only 62 (32%)
  Finished product testing only 34 (17%)
  Dosimetric monitoring only 10 ( 5%)
  Process control only 1 ( 1%)
  Finished product and biological indicator testing 88 (45%)

The small proportion (17%) of firms relying solely upon finished device sterility testing as a
means of product release reflects the OMD position that it is more effective to build in process
control through validation, calibrated instruments, and certified biological monitors rather than to rely
upon sterility testing a few discrete units.

At the conclusion of all FDA inspections, the investigator is obligated to present the company’s
top management with a list of objectional conditions. This form, FD 483, is entitled ‘Inspectional
Observations’. Of the 206 sterile device manufacturers inspected, 118 received an FD 483 with items
pertaining to sterility. The five most frequently cited problems were as follows:

1. The process was in some way inadequate. This broad category included generally poor
manufacturing practices including controls insufficient to ensure that the finished device met its
claim for sterility.

2. There were deficiencies in the Device Master Record (DMR). In some cases, the current
sterilization procedures and specifications were not included in the DMR. In others, the DMR
was not signed or dated as required, or there was inadequate control of changes in the DMR.

3. There were problems regarding the use and testing of biological indicators (BI). In some cases
the number used or placement in the load did not meet the DMR requirements or the
specifications established during validation. Some citations noted that positive unexposed
controls were not always tested along with exposed BIs from the same lot. Some companies
had apparent surviving BIs, but released the load anyway without an adequate investigation into
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the reason for BI survival.
4. Process validation was lacking or incomplete. There were deficiencies in equipment

qualification and process performance testing using suitable monitors and microbial challenges.
5. There were problems with finished product testing for sterility or EO residues. In some cases,

companies failed to follow their own procedures for testing, in others, the test method was not a
compendial (e.g. USP) method, and its use as an alternative was not validated. There were
instances of improper follow-up, including retesting in cases where positive product samples
were found.

Following its review of the objectionable conditions reported, the FDA may send a letter to the
company’s top management requesting an action plan for correction of the deficiencies. The requested
response time may be ten or thirty days, depending upon the severity of the findings. Firms in the US
and other countries are always encouraged to reply in writing to FDA concerning an FD 483 or
written letter.

The use of a special compliance programme attachment for sterile devices reflects the FDA’s
concern that all devices which must be sterile at the time of use be safe and effective. Thus the
inspectional strategy includes thorough coverage of validation, process controls, biological
indicators, and package integrity. It is obvious that industry shares this concern. There has never been
adverse industry reaction to Office of Medical Devices coverage of sterile device manufacturing.
Moreover, the industry itself is very active in research and in sponsoring conferences and symposia
such as this one. Industry and the regulators working together in advancing sterilization science can
achieve improved levels of patient safety.
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Appendix
CYCLE PARAMETERS
Determine the device master record specifications and determine the conformance to these
specifications by reviewing sterilization process lot history records for the following parameters:
(attach one representative sterilization history record including charts)

FIRM’S
SPECIFICATIONS

OBSERVED
PARAMETER

VACUUM (Specify mmHg, in. H20) : _________________ _________________

AIR VENTING OTHER THAN BY VACUUM (prior to or during gas charging) : YES/NO YES/NO

TEMPERATURE : _________________ _________________

OPERATING PRESSURE : _________________ _________________

RELATIVE HUMIDITY (%) : _________________ _________________

PREHEATING (heat exchanger) OR HOLDING TEMPERATURE OF GAS WHEN
INJECTED INTO CHAMBER

: _________________ _________________

GAS CONCENTRATION IN CHAMBER (mg/liter) : _________________ _________________

IS CIRCULATION FAN USED : YES/NO YES/NO

EXPOSURE TO STERILANT (hrs.) : _________________ _________________

ARE MULTIPLE EVACUATION CYCLES USED (number of cycles) : _________________ _________________

COME-DOWN OR EVACUATION RATE : _________________ _________________
HOW IS EACH OF THE ABOVE PARAMETERS MONITORED?
(specify when not monitored):
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SECTION II –
VALIDATION OF STERILIZATION PROCESS
HAS THIS CYCLE BEEN VALIDATED:

YES___________ NO___________ PARTIALLY___________

LIST QUALIFICATIONS, BACKGROUND AND EXPERIENCE OF INDIVIDUALS
RESPONSIBLE FOR PERFORMING, REVIEWING AND APPROVING VALIDATION STUDIES:

METHOD TO DEVELOP STERILIZATION CYCLE
(specify overkill or bioburden):

A. Summarize cycle development test results (e.g. laboratory or pilot plant studies):

B. Describe microbial challenge system used in above studies:

STUDIES CONDUCTED TO VALIDATE THE STERILIZATION PROCESS
A. INSTALLATION QUALIFICATION OF EQUIPMENT (describe when applicable)

1. Empty chamber temperature distribution studies:

2. Is the measurement equipment calibrated before validation studies (including
thermocouples):
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A Regulatory Review of Sterilization Control in
Europe
Patrick T. Doolan

Becton Dickinson and Company,
European Division
Meylan, France

The developments in the regulation of sterile single-use medical devices which are taking place in
Western Europe are reviewed. Significant differences in approach to the regulation of sterilization of
medical devices may be observed when one country’s requirements are compared with those of
another.

Table 1
Europe – Its main politico-economic groupings

No. of Member
States

Population
(millions)

1. The European Community (EEC) 1957 [Spain (37 millions)
now negotiating entry] 10 279

2. The European Free Trade Association 1960 7 41
3. The Council for Mutual Economic Assistance (COMECON)
(Excludes USSR) 7 99

Others: Spain, Yugoslavia, Albania    3      62   
27 481

There are some 18 countries in Western Europe (Table 1). Few share a common language and the
peoples in those countries inherit distinctly different cultures and traditions. While it is not surprising
then that the approaches to regulation vary widely, it does make things complicated. The same
medical device may be submitted to quite different requirements in each of several countries. This
can make it difficult to market a particular device, even with multilanguage labelling, in the same
configuration in several European countries.

Requirements in a given country for sterile single-use medical devices generally fall in one or
more of these categories:

Good Manufacturing Practice (GMP) codes
Registration – of the products

– of the manufacturing facility
Notification – of products
Labelling
Expiration dating
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National languages
Packaging material specifications
Product standards or specifications
Presterilization microbial load (‘bioburden’) determinations
Sterilization cycle requirements

Good Manufacturing Practice Requirements
Codes of GMP have been written in Europe for medical devices and have been published in

Denmark (MEDU 1967), in France (1978), and in the UK (1981). Draft documents have been
prepared in Sweden and in Italy.

The Danish GMP code for medical devices is contained in the recommendations of the influential
MEDU (Medical Utensils) Committee and was published in 1967. It focuses on the need to maintain
hygienic conditions and control over the manufacture of sterile medical devices. The French GMP
document, Pratiques de Bonne Fabrication (Maisonneuve S.A., 1978) is a more general guide and is
not specific to medical devices.

The current UK GMP document, Guide to Good Manufacturing Practices for Sterile Medical
Devices and Surgical Products (H.M.S.O., 1981), which is a revision of the Guide published in
1979, represents the fruits of a co-operative effort between the Department of Health and Social
Security and the major trade associations whose members manufacture these types of products. In the
revised edition, a complete chapter on sterilization was added.

Registration Requirements
Registration schemes for groups of products have been introduced in Belgium (1966), Italy

(1975), and Spain (1976). Each of these schemes varies in scope, but in Belgium and Spain they
cover sterile single-use medical devices. In general, devices for in vitro diagnostic use are not
included in their scope.

In Italy, the scope of the scheme is limited to a list of products (‘Presidi Medico-Chirurgici’) as
defined in the Ministry of Health memorandum (‘Circolare’) No. 74 of 1 September 1975 (Appendix
1). Although a revised set of regulations for medical devices has been drafted, it has not yet been
finalised.

In Spain, the registration of sterile medical devices is regulated by the order of 21 October 1976,
published in the Official Gazette on 19 November 1976 (see Appendix 2 for an unofficial
translation). This order deals with the technical management by a qualified person (pharmacist) of
manufacturing, control of materials, process and product quality, facility licensing, registration of
sterile devices, packaging, labelling, distribution and sale. The registration requirements demand that
information be provided on the product, the manufacturing, packaging and sterilization processes used
on the quality control of raw materials, finished goods and packaging, and on the estimate of the
product’s shelf life. Samples of the final packaging materials must also be supplied. Authorization to
manufacture and/or distribute the product will include the requirement to show the registration
number and the name of the registered qualified technical manager (pharmacist) on the product
packaging.

Product registration schemes have been proposed in Norway, Sweden, and th Netherlands.
Sweden has a product notification scheme for industrially sterilized medical products in placeSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



already.
In the UK, the Department of Health and Social Security (DHSS) decided against product

registration for medical devices although the DHSS Supply Division, Scientific and Technical Branch
(STB) have in place a number of product approval schemes based on technical specifications. The 25
or so products are subject to testing against the relevant technical specification and the manufacturers’
facilities are also subject to inspection by the DHSS STB staff. Extension of this scheme to all
medical devices was seen to be costly, and so the DHSS has introduced in 1982 a voluntary
registration scheme for manufaturers of sterile products which qualifies manufacturing sites as being
in compliance with the DHSS Guide to GMP for Sterile Medical Devices and Surgical Products,
referred to above.

The scheme is designed to provide the National Health Service (NHS) with the names and
addresses of manufacturers whose product or processes comply with the DHSS Guide to GMP.
Details of the scheme appear in Appendix 3. A Declaration (of compliance) Form is part of the
application for each registration, to be signed by the Chief Executive, the Production Manager, and
the Quality Controller at each manufacturing site. (Provision is made in the application for listing
point(s) that are not yet in accordance with the Guide, with anticipated date(s) of completion of
necessary changes(s).) Teams of three STB inspectors tour the manufacturing and sterilization areas;
check the air handling and environmental controls; review the cleaning equipment, practices, and
schedules; investigate physical and microbiological quality control procedures; evaluate materials
control, identification, and segregation; ask questions about the organization structure and quality
systems, and so on, using the Guide as their reference.

Satisfactory outcome of the inspection by STB staff will be required to achieve or maintain the
inclusion of the manufacturer’s name on the register of manufacturers. The list of registered
manufacturers will be promulgated to the NHS with the recommendation that sterile products should
be purchased only from registered manufacturers.

Labelling and Expiration Dating Requirements
For manufacturers aiming to produce in one location for several European countries – even using

a multilingual approach – these requirements pose a problem. Several countries impose mandatory
expiration dating of most sterile products regardless of the real shelf life of the product; these are
France, Italy and Spain. France and Italy have changed the maximum shelf life permitted over the
years – Italy started with a maximum of five years and reduced it to three years in 1975; France
started with one or two years maximum shelf life (depending on the sterilization process or on the
type of packaging) and increased it to a maximum of five years earlier this year. Spain maintains that
the maximum term allowed for expiration dating of drug products (five years) shall apply to sterile
devices also.

The many items of information which must appear at each level of packaging can and do crowd
the surface of the individual (unit) packaging of smaller devices. A number of countries have required
that their registration number for the product, or the company, appear on every item (Italy, Belgium,
Spain). As we have seen above, the name of the (registered) responsible pharmacist must appear on
the product labelling to satisfy Spanish requirements.

A Labelling Working Group was set up in 1979 y EUCOMED (the European Confederation of
Medical Suppliers Associations) to survey the diversity of labelling requirements in Europe and toSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



prepare a recommendation to harmonize these requirements. Its draft recommendations and the
underlying rationale may be found in Appendix 4. As a result of the work, those countries about to
introduce labelling requirements were in a position to consider these carefully prepared
recommendations.

National Languages
While only France has a law requiring everything printed on and with the product which is not in

French to appear in French, in practical terms the national language is necessary in countries where
product registration schemes are in place for sterile products. It is also desirable, if not essential,
because of product liability considerations, to translate warnings, safety precautions, and related
aspects of the instructions for use.

Packaging Material Specifications
To date, packaging material specifications have only appeared in the UK and for a limited range of

papers. France, through the Pharmacopoeia Commission, has prepared draft monographs for a number
of grades of paper for packaging sterile products. The measurement of microbial barrier properties
have not, thus far, been included in any of these specifications.

Product Standards
There are a growing number of national and international product standards for sterile medical

devices. These are generally prepared by committees set up by a national standards body such as DIN
(Germany), AFNOR (France), BSI (UK), etc. Standards have been published for products such as
hypodermic needles, syringes, catheters (urinary), transfusion equipment, anaesthetic and respiratory
equipment, mechanical contraceptives, surgical implants, etc. Occasionally, one finds a second
standard written for the same product by a national Pharmacopoeia Commission, but written, of
course, from a different point of departure. In certain countries conformance to product standards is
mandatory for that part of the market that is partly or fully reimbursible by public funds.

Sterilization-related Requirements
Regulatory controls of sterilization processes are defined in different ways in the European

countries. Sweden has ‘guidelines for the control of sterility of industrially sterilized single-use
medical devices’. France and Italy have issued pharmacopoeial monographs. In the UK, the DHSS
Guide to GMP for Sterile Medical Devices and Surgical Products contains requirements in Chapter
8 and the ‘Orange’ Guide to Good Pharmaceutical Manufacturing Practice covers the same
sterilization processes, but with some differences (mainly minor in nature). The MEDU Committee
recommendations of 1972 set out the Danish requirements. It is proposed to review some of these
requirements.

Presterilization Microbial Load (Bioburden) Determination
A number of countries require bioburden numbers, as opposed to bioburden resistance,

determinations to be carried out. In the Annex to the 9th Edition of the French Pharmacopoeia, in the
monographs on ethylene oxide and radiation sterilization (see Appendix 5), reference is made to the
need to establish the bioburden number, and in the case of radiation, a qualitative analysis of the
bioburden is also required. This is aimed at detecting microorgansisms of lower sensitivity to
radiation treatment. Apart from the above cited French requirements, no regulations demand the
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determination of the bioburden sensitivity to the chosen sterilizing agent.
In general, no country has set criteria for acceptable bioburden numbers with the exception of

Denmark and Sweden. The MEDU radiation-sterilization recommendations for sterilization dose
levels are as shown in Table 2.

Table 2
Denmark – MEDU Sterilization dose requirements as determined by bioburden levels

Average Initial Count per product Item Minimum Absorbed Dose to be Used
> 50 35 kGy (3.5 Mrd)
> 500 45 kGy (4.5 Mrd)
>5000 50 kGy (5.0 Mrd)

In Sweden (Appendix 6), a sterilizing dose of 32 kGy is required for products having less than 50
microorganisms/product item. A dose of 25 kGy is considered acceptable for sterilization where the
bioburden is less than one microorganism/item and where long experience, properly documented,
demonstrates the consistently low bioburden level.

Sterilization Dose Requirements for Radiation Sterilization
With the above exceptions, where a dose requirement has been specified in Europe, it has been 25

kGy (2.5 Mrd). In the Netherlands, no dose has been specified for medical device sterilization. The
UK DHSS Supply Division (STB) states: ‘A minimum dose requirement of 25 kGy (2.5 Mrad) is
generally accepted as adequate for this purpose’; and the Medicines Division states: ‘A radiation
dose requirement of 25 kGy (2.5 Mrad) is regarded as adequate from the microbiological viewpoint
… Other doses may be used subject to adequate biological validation being performed’.

Biological indicators are required routinely in radiation sterilization only in France.

Cycle Requirements for Ethylene Oxide (EO) Sterilization
Generally speaking, no specific requirements have been laid down for gas concentration, relative

humidity, temperature, or time of exposure to the EO gas. Most countries requirements spell out that
biological indicators (BI) must be used. The number of BIs required varies from ‘at least 106 B.
stearothermophilus spores’ (France) to 3 to 6 spore preparations (BIs) per cubic metre of sterilizer
volume, but not less than 6 (Sweden). In the UK, a minimum of 10 BIs per cycle must be used.

Product Sterility Testing
Product sterility testing remains a requirement in a number of countries although awareness of its

low value is spreading. In the UK, product sterility testing is not required for EO or radiation
sterilization. Some European countries accept dosimetric release of radiation-sterilized products.

Ethylene Oxide Residuals
Established limits are the exception rather than the rule. France has a limit of 2 ppm for all EO-

sterilized products and Italy has a similar limit for certain medical devices.

Trends
It may be said that the trends in regulatory controls are moving slowly towards abandoning theSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



product sterility test as a release criterion, towards dosimetric release of radiation-sterilized
products, towards validation of sterilization cycles, and, very slowly indeed, towards permitting the
matching of sterilization cycles/doses to bioburden to give calculated levels of sterility assurance.
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Appendix 1
Italy – Registration Scheme

List of Affected Products
(Unofficial Translation)

 
Circular No. 74 Roma 1.9.1975

Object: Medical-Surgical Devices

From the part of the Trade Associations and Pharmaceutical Companies are often requested
information concerning which products are today subject to registrations as medical-surgical devices,
according to the article 189 of T.U. (Text Unique) of the medical laws of 1934.

With regard to these requests, we make it clear that at the present are subject to registration, as
medical devices, the following products:
  1. Pessaries
  2. Irrigators, douches, syringes, vaginal insufflators, vaginal cannulas.
  3. Disinfectants and substances commercialized as bactericides or germicides.
  4. Instruments to contain intestinal hernias or abdominal organs.
The numbers 1-2-3-4 are included in the list enclosed to the R.D. (Royal Decree) 6.12.1928 no.
3112.
  5. Instruments and auricular prosthesis, ear-trumpets and similar (Ministerial Decree 5.2.1929)
  6. Insecticides (D. ACIS 21.9.1954)
  7. Insect repellants (Ministerial Decree 31.7.1971)
  8. Plastic syringes single-use (Ministerial Decree 27.2.73)
  9. Pipes, masks and applications for reanimation (Ministerial Decree 22.4.1963)
10. Non pharmaceutical products containing esachlorophene (Ministerial Decree 8.1.73 – circular

No. 100 of 2.9.74).
11. Plastic defluxion instruments for blood and hemoderivatives.
12. Plastic containers for blood and hemoderivatives.
13. Plastic defluxion instruments for infusional solutions.
14. Plastic containers for infusional solutions.
15. Pipes, containers and instrument parts for dialysis – including membranes (circular No. 28 of

2.4.75).
16. Pipes, or instrument parts for extra-bodily circulation.
17. Catheters for cardiology and vascular prosthesis.
18. Electrodes for pacemakers.
The medical devices from No. 11 to No. 18 are all subject to registration according to Ministerial
Decree 27/2/73 – circular No. 28 of 2.4.75 – circular No. 49 of 30.5.75 – circular No. 50 of 30.5.75.
19. Orthopedic shoes for children (Ministerial Decree 22.3.75 G.U. No. 129 of 17.5.75).
We would also like to remind you that the use of the following products has been forbidden:

1. DDT in aerosol (Circular No. 3 of 11.1.71)
2. DDVP in aerosol (Circular No. 196 of 12.11.71)Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



3. Chlorocyclodienics (Ministerial Decree 1.2.74)
4. Aminotriazol as herbicide for civic and domestic use (Ministerial Decree 9.10.74).
5. Lindane and BHC (Ministerial Decree 9.11.74).

We believe it is also important to remind some directions which have been issued for the medical-
surgical devices.
–   Taxes to pay for the medical-surgical devices (G.U. No. 292 of 11.11.72)
–   Solvents and propellants authorized (Circular No. 32 of 14.3.72 – circular No. 119 of 14.9.72 –

circular No. 4 of 13.1.72)
–   Modifications to the chemical tests for the plastic (Ministerial Decree 5.7.74 – G.U. No. 189 of

19.7.74)
–   Blood preservation and hemoderivatives in PVC bags – max 72 hours (Ministerial Decree

28.3.75)
–   Medical devices containing pyrethrum and pyrethrins – modification of instruction sheets (circular

No. 135 of 20.11.74).
All analysis certificates made by University Institutes must be on stamped paper and

countersigned by the University President.
All certificates released by provincial Laboratories of Public Health and Prophylaxis must be on

stamped paper and signed by the managing director of the lab.
We invite the addressees to give the maximum urgent promulgation to the present circular in order

to avoid any possible doubt by the interested parties.
The police HQ of NAS (Nuclei Anti Sofisticazioni) is kindly requested to take urgently all

provisions in the case medical devices could be found in the market which are not regularly
registered as such.
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Appendix 2
Spain – Registration of Sterile Medical Devices
(Unofficial Translation)

Official Gazette No. 278, 19th November, 1976.

MINISTERIO DE LA GOBERNACION
(Ministry of the Government)

ORDER OF OCTOBER 21, 1976 CONCERNING THE MANUFACTURE, REGISTRATION AND
CONTROL OF STERILE MATERIAL.

The medical-pharmaceutical practice, for greater effectiveness, guarantee of use and health
protection makes it necessary for certain materials, utensils and products be manufactured, sold and
used after previously being submitted to sterilisation processing and under the condition that they are
used only once.

Their growing use, particularly of those for “single-use”, can involve certain health risks which
must be prevented by subjecting their production, preservation and sale to standards and control.

Therefore, as proposed by the Director General of Health, I have found it advisable to decree:
1.     Field of Application
1.1   This order refers to those articles currently used in the medical-pharmaceutical practice which

must be or are assigned as being sterile, whether or not for single use only, such as syringes,
hypodermic needles, sutures, spatulas, lancets, depressors, probes and catheters, sets for the
administration of solutions and blood extraction, and any other similar devices, excluding sterile
dressings and sutures, which will continue to be regulated by Decree 2464/1963 of 10th August,
and Ministerial Order of 5th May, 1964, as well as to organisations and Companies which
manufacture, import, distribute and sell them.

2.     Manufacturers
2.1   All firms which are engaged in the manufacture of the aforementioned articles will be subject to

health authorisation and registration with the appropriate department of the Directorate-General of
Health, and their installations will be subject to the Departments inspection and control.

2.2   The processing of authorisations and registrations to which this Order refers shall be addressed
to the Deputy Director of Pharmacies, Directorate-General of Health.

3.     Technical Management
3.1   The manufacture of products detailed in this Order will be carried out under the supervision and

responsibility of a qualified technical person who will guarantee the cleanliness of manufacture
and the control of sterilisation.

3.2   In any case, the appointment of a qualified technical person shall be notified within one month to
the Provincial Health Authorities who, respectively will notify the Directorate-General of Health
within 15 days.
If the qualified technical person resigns from the position, the organisation will name a substitute
and confirm the appointment within one month, following the indicated procedures.

3.3   Companies which import sterile articles for distribution, must justify to the Directorate-General
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of Health that sufficient health guarantees exist for the imported product.
4.     Requirements for Materials and Controls
4.1   All organisations engaged in the production of articles detailed in this Order shall as a minimum

have the following sections:
Warehouse: It shall consist of three distinct parts: one, for raw materials used in production; two,
for manufactured products not yet sterilised; three, for finished products ready for distribution.
Manufacturing: In this section besides the packaging and sterilisation of products, the operations
of material technology shall be carried out.
If the packaging process is carried out after sterilisation of the product, it (the packaging) will
have to be undertaken in a sterile area unless the method does not require it; as a minimum this
would consist of an ante-room fitted with germicidal lamps where personnel change clothing and
a sterile area for aseptic packaging. Communications with this sterile area from the outside and
the supply of materials shall be by adequate means to avoid contamination; all technical and
auxiliary personnel employed on product preparation shall be subject to periodic health checks to
guarantee that they are not suffering from any contagious illness or skin diseases.
Packaging and sterilisation shall in any case be independent and suitable to the processing
methods employed, or to the nature of the material to be sterilised and, when necessary, an
intermediate quarantine department shall be established.
Control Laboratory: It shall be equipped with apparatus to carry out tests which guarantee
quality, non-toxicity and sterility of the products.

4.2   The controls will be appropriate to the nature of the substances and products and will be
undertaken on raw materials, during production and on finished and packed products.
These will include the physical, chemical and biological controls which guarantee the quality and
preservation of the finished product e.g., corrosion, polishing, presence of particles, oxidizable
substances, leachable substances, haemolitic action, treatment residues, toxicity, irritation,
pyrogens, dimensions, calibration and sterility.
The manufacturer will be under obligation to keep the protocols of the controls carried out, for the
raw materials the manufacturing process and the finished product, holding itself responsible for
the said analyses and controls.

4.3   The minimum controls to be performéd in finished products shall be:
Sterility tests.
Pyrogens.
Functionability (dimensional and calibration).
Residues of sterilising agents and of residual radioactivity.
Permeability and strength of packaging.

4.4   The Directorate-General of Health, in duly justified cases, and subject to petition by the firm,
may authorise the analytical controls of raw materials and finished products to be carried out in
Specialised Centres.

5.     Company Authorisation
5.1   The authorisation shall be initiated by a petition to the Directorate-General of Health, in which

the following information and documents will be included:
Full name of the owner of the firm or name of the Company.
Full address of the establishment.Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



Name of responsible Director or Guarantor.
Map of the establishment.
A technical specification of the manufacturing and sterilisation processes and of the controls to be
carried out pursuant to those provided for in Clauses 4.2 and 4.3.

5.2   In the light of the documentation submitted and other appropriate information obtained, and an
inspection visit of the premises, the Directorate-General of Health will be able to declare the
Company suitable for operation and assigning to it an identification number.
In the case of dealing with previously authorised Pharmaceutical Laboratories the identification
number shall be the number already assigned.
If, as a result of the visit to the premises or other causes, the established conditions are not met,
authorisation shall not be granted. However, the Company may re-apply for authorisation after the
deficiencies which resulted in the original refusal have been corrected.

5.3   All substantial modification to the installations, processing or control systems, or changes in
address must be authorised by the Directorate-General of Health, subject to the inspections and
reports deemed appropriate, as long as the requirements of other Ministerial Departments are not
affected.

6.     Registration of Sterile Material
6.1   The registration procedure for the products subject to the present regulation will be initiated by

a petition to the Director-General of Health, by the manufacturing or import Company, signed and
authorised by a responsible Director or Guarantor, in which the following information and
documents shall be enclosed:
Name and address of the manufacturing or importing organisation.
Name of responsible Director or Guarantor.
Type of product and description of its basic nature.
Manufacturing and packaging processes.
Sterilisation systems used.
Controls made on raw materials, finished products and packaging materials.
Estimate of expiration date of sterility.
Name and authorisation number of the Control Laboratory, approved by the Directorate-General
of Health, carrying out analytical controls in accordance with Clause 4.4.
Samples of the packaging or conditioning (finishing) material.

6.2   In the light of the information contained in the registration proceedings and the statement from the
National Pharmacobiology Centre, the Director-General of Health will:-
Pass a resolution denying authorisation of registration for manufacture.
Request the firm to provide further studies, explanations and modifications.
Authorise the manufacture and distribution of the product.
The authorisation shall be assigned a Directorate-General of Health registration number …. M.E.
(Numero Registro D.G.S. Material Esteril), which, compulsorily, shall be printed on the outer
and/or inner packaging material, and, if possible, on the product in very clear printing.

6.3   For these sterile products and materials, a lot shall be defined as each sub-batch (fraction) of
production which has been subjected to the same manufacturing and sterilisation process.
Lots shall be identified by a code consisting of a single capital alphabetical letter and a number
correlating with each lot of products manufactured with the same material, in accordance with theSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



Decree No. 2828/1965, 14th August concerning numbering of lots.
6.4   On each occasion when a manufactured lot is finished or imported, the Technical Director or

Guarantor shall notify the Directorate-General of Health, quoting the lot number and number of
items contained in the lot.

7.     Conditioning (Packaging) Material
7.1   The conditioning (packaging) material to be used must be adequate to guarantee the quality and

sterility of the product when it reaches the consumer.
7.2   In addition to the words ‘Sterile’ and ‘Valid for Single Use Only’ the packaging material shall be

clearly printed with the following data:
Name of product.
Registration Number.
Lot Number.
Name of the responsible Director or Guarantor.
Name of manufacturing or importing firm.
Use before date.

8.     Distribution and Sale
8.1   Although the distribution is considered to be free, the Companies must comply with the

conditions which guarantee storage and control.
If at any time, in the judgement of the Health Authorities, the distributing organisation does not
meet the minimum conditions guaranteeing proper warehousing of the products subject to these
regulations, the Directorate-General of Health, after receiving the necessary reports, may order
the immobilisation, confiscation and prohibition of the distribution of the materials.

8.2   Sales or dispensing shall be effectuated through Pharmacies and establishments specialising in
medical and sanitary materials and products; these establishments shall similarly be subject to
inspections by the Directorate-General of Health.
Such specialist establishments shall report to Provincial Health Departments their existence and
activities in accordance with this resolution.

9.     Violations and Penalties
Infringement of these regulations will be penalised according to the type of offence and the scale
of penalties contained in Decree 2464/1963, 10th August, following the sanctioning procedures
provided for in the Law of Administrative Procedures.

10.   Final Provisions
10.1 The Directorate-General of Health is empowered by Resolution to expand and complement the

provisions established in this Order, both in general aspects of the present standards and in those
cases where additional standards are necessary due to the special health characteristics of some
products and materials.

10.2 Manufacturing organisations, authorised and registered specialist pharmaceutical laboratories,
importers, distributors and specialised sales establishments referred to in Section 8.2, shall have
one year from the date this Order comes into force, to adapt themselves and comply with the
established standards.
Within the same period of time, inscription and registration shall be solicited for all manufactured
and imported sterile products.

Madrid, 21st October, 1976.
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Directorate-General of Health.
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Appendix 3

United Kingdom – Registration Scheme
Scheme for the Registration of Manufacturers of Sterile
Medical Devices and Surgical Products
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Introduction
1. Following discussions with Trade Associations, the Department has decided to establish a register
of manufacturers of sterile medical devices and surgical products.* The Department’s main intention
is to aid the National Health Service to obtain products of uniform quality, safety and performance by
making available the names of firms which manufacture sterile products according to recognised
principles of good manufacturing practice. The scheme does not involve checking the design and
performance of individual products and should not be confused with existing or planned product
approval schemes which may need to be continued as specific extensions of the manufacturers’
registration scheme.
2. The Guide to Good Manufacturing Practice for Sterile Medical Devices and Surgical Products
which has been prepared in collaboration with Trade Associations will form the basis of the
Registration Scheme. Manufacturers, whether based in the U.K. or abroad, who wish to be registered
will need to declare in writing their compliance with the principles and requirements set out in the
Guide.** They will need to confirm, in respect of themselves and their subcontractors, that premises
and records (as specified in the Guide) will be made available for inspection by officers of the
Scientific and Technical Branch (Supply Division) of the Department of Health and Social Security.
Complete compliance with all the requirements of the Guide is the normal condition for registration
but attention is drawn to Sub-Clause 1.1.3 of the Guide which states that “Systems other than those
described but which achieve the same ends may be equally acceptable”. Acceptance of alternative
methods or any other departures from the full provisions of the Guide will be subject to terms and
conditions laid down by the DHSS. (Manufacturers of implantable cardiac pulse generators should
also refer to the document “Specific Requirements for Quality Systems for Manufacturers of
Implantable Cardiac Pacemakers”, HMSO 1981).
3. The list of registered manufacturers will be promulgated to the National Health Service with the
recommendation of the Health Service Supply Council that sterile products should be purchased only
from registered manufacturers.
4. The National Health Service purchases many sterile products through wholesale firms and other
agents. Since these are not manufacturers the registration scheme will not apply to them, but they
should note that the National Health Service will be advised to ensure that the items purchased are
produced by registered manufacturers.
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Eligibility and Application for Registration
5. Applications should be made by completing and submitting the enclosed application form and
declaration to:-

The Registration Scheme Officer
DHSS
Supply Division, HSSB,
Room 316
14 Russell Square
London WC1B 5EP

The initial application should NOT include a payment for registration. The Department will notify
applicants when payment is due.
6. Manufacturers* whose sterile products have been supplied to the National Health Service on or
before 1 January 1981 will be registered when examination of the information provided and any
subsequent enquiries have been satisfactorily completed.
7. For other manufacturers, satisfactory inspection by Scientific and Technical Branch (Supply
Division) DHSS will be necessary before registration can be completed. Exceptionally the
Department may exercise its discretion to dispense with this pre-registration inspection where a
manufacturer has been registered or approved under a similar scheme which offers equivalent
assurance of good manufacturing practice.
8. Unsatisfactory or incomplete information may delay inspection and/or registration.
9. After registration all manufacturers and their subcontractors will be liable to inspection by officers
of Scientific and Technical Branch at any time.
10. A decision not to include a company on the register will be taken at a senior level in the
Department as part of the administrative arrangements for operating the scheme. A company that
wishes to object to non-inclusion in or to removal from the register should write to the Controller of
Supply at DHSS, Room 211, 14 Russell Square, London, WC1B 5EP.
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Declaration
11. It will be seen from the Declaration Form that the undertaking regarding manufacture in
accordance with the Guide must be signed by the Chief Executive of the manufacturing Company and
the key personnel – the Production Manager and the Quality Controller, and that qualifications and/or
experience must be given for the last two signatories. A declaration stating compliance of each
manufacturing site with the Guide must be provided. THE DEPARTMENT MUST BE INFORMED OF ANY
SUBSEQUENT CHANGE.
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Charges
12. A non-returnable charge of £500 will be made for registration. This charge will cover an initial
registration period of three years and further payment will be required each time an application is
made for continued registration. In addition applicants may be liable to a further charge if, in
undertaking inspections, the Department incurs expenditure substantially in excess of £500.
All cheques should be made payable to the Department of Health and Social Security.
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Removal from the Register
13. A manufacturer may be removed from the register at any time if the Department is satisfied that:-
(i)     false particulars have been submitted to the Department or to its inspectors; or
(ii)    the results of inspection show standards significantly below those required and the manufacturer

is unwilling or unable to take corrective measures; or
(iii)   the appropriate charges for registration or inspection have not been paid.
14. Manufacturers wishing to withdraw from the register should advise the Department in writing.
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Publication of Register
15. The register will be published and circulated to the National Health Service and to registered
manufacturers annually. Changes will be circulated regularly.
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Enquiries
16. All enquiries about the scheme should be addressed to:-

The Registration Scheme Officer
DHSS
Supply Division, HSSB,
Room 316
14 Russell Square
London WC1B 5EP
Telephone: 01-636 6811 Ext 3600
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DHSS
Supply Division, 1982
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Appendix 4

EUCOMED – Labelling Recommendations for
Sterile and Non-Sterile Medical Devices

Final Draft
Sterile Non-Sterile

Unit Container
Description of Contents X X
The word “STERILE” X –
The words “SINGLE USE” X –
Identity of Manufacturer or Supplier X X
Batch Number X X
Instruction for Use (if required) X X
Special Precautions (if any) X X
Date of Expiration (if applicable) X X

Shelf Container
Description of Contents X X
The word “STERILE” X –
Name and Address of Manufacturer or Supplier X X
Batch Number X* X
Date of Sterilization (month, year) X* –
Date of Expiration (if applicable) X X
Instruction for Storage (if applicable) X X

* If the Batch number clearly identifies the date of sterilization (month, year), date of sterilization is not required in addition to a separate
batch number, and vice versa.

RATIONALE FOR RECOMMENDATIONS BY EUCOMED
WORKING GROUP

1.     Country of Origin
Requirements for identification of Country of Origin are usually governed by Trade Description
Legislation and/or Customs and Excise requirements and are therefore not included in these
recommendations.

2.     Interpretation of Government and Regulatory Body Legislation
The Group found it difficult to interpret some of the labelling requirements for committed
countries. In some cases dual standards are being applied by governments and regulatory bodies.
This matter can only be resolved by the appropriate local Association representing EUCOMED’s
interests.Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



3.     Expiry Date
The philosophy adopted by the Group was that if the product is subject to material degradation
within five years the expiry date (month and year) should be printed on the unit and shelf
container. For all other practical purposes, products will remain sterile indefinitely if handled
correctly. Maintenance of sterility is event related rather than time related.

4.     Language Requirements
The Group recommended that the following four languages should be adopted and used singly or
in any combination.

English;    French;    German;    Spanish
Where products are manufactured in countries other than those mentioned above, the local
language may be printed if required by legislation.

5.     Non-Committed Countries
In preparing the charts it is assumed that the following are non-committed countries and will
accept EUCOMED recommendations.

5.1   Medical Devices
Austria, Cyprus, Finland, Greece, Iceland, Luxembourg, Malta, Portugal, Switzerland, Turkey.

5.2   Surgical Products
Austria, Cyprus, Finland, Greece, Iceland, Ireland, Luxembourg, Malta, Portugal, Switzerland,
Turkey, Spain, Norway and Italy.

6.     Rationale for Omitting Some of The Committed Country Requirements for Sterile Surgical
Products and Single-Use Medical Devices
The Group considered a rationale for omitting from the EUCOMED recommendation charts some
of the requirements of committed countries, e.g.

6.1   Method of Sterilization
The indication is of no help or importance for the end user. The indication “STERILE” implies
that the products have been sterilized by an accepted method under the responsibility of the
manufacturing company. The indication “STERILE” gives an assurance of the microbiological
safety of the product.

6.2   Registration Number and Authorisation Number
These indications are of no help to the end user. They are code numbers for the identification of
the product (registration number) and for the manufacturer (authorisation number) which are
already clearly identified.

6.3   Name of Responsible Person/Pharmacist
The identity of the manufacturer or supplier and the lot or batch numbers will automatically lead
to the responsible pharmacist.

6.4   Dose of Radiation required
The assurance of microbiological safety, given by the indication “STERILE” implies, for gamma
sterilization, that the required dose has been given in compliance with the relevant GMP.

6.5   Identity of Sterilization Facility and Address
The identity and address of the sterilization facility is traceable through the manufacturer and
therefore need not be specified separately.

6.6   Pyrogen-Free Claim
National and international standards require that some single-use medical devices are free fromSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



pyrogens. It is therefore not considered necessary to make this a mandatory requirement on the
package.

6.7   Sterile Provided Pack Unopened or Undamaged
This statement is considered not to be necessary on the unit or shelf container. For all practical
purposes products will remain sterile indefinitely if stored and handled correctly. Maintenance of
sterility is event related rather than time related.

GLOSSARY OF TERMS
Terms

Unit Container A package containing an individual device or dressing or a number of devices
comprising a procedural kit to be used on one patient.

Shelf Container A package containing a number of unit containers.

Committed Countries Those countries where there are existing requirements supported by
legislation and/or requirements enforced by local inspectors.

Non-Committed
Countries

Those countries where there are no existing requirements supported by
legislation or if legislation exists the country concerned is not enforcing stated
requirements.

Batch Number (or Lot
Number)

The designation of a batch by means of distinctive combination of numbers
and/or letters which identifies it and permits its history to be traced. A batch
may be a single product in which case this may be referred to as a serial
number.

Address of
Manufacturer/Supplier

The Town and/or Postal Code and Country sufficient to locate or contact the
Mnufacturer.

Medical Device

An instrument, apparatus, implement, appliance, implant, or other similar or
related article, which is intended for use in the treatment of humans,
contraception, or in diagnosis.
A device achieving its principal intended purpose through chemical or
biological action is excluded from this guide.

Surgical Products
Adhesive and non-adhesive non-medicated surgical products. Surgical
devices are designed to cover surface damaged body parts and/or absorbed
body fluids.
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Appendix 5

France – Sterilization
(Unofficial Translation)

Published
October 1976

FRENCH PHARMACOPOEIA
Annex to 9th Edition

Part II, pp. 212-6

STERILIZATION
Four sterilization processes are in general use in the pharmaceutical industry:
a) sterilization by heat,
b) sterilization by filtration,
c) sterilization by contact with gaseous substances,
d) sterilization by ionizing radiation.
The National Pharmacopoeia Commission is at present revising the definitions, methods and
operating conditions to be respected when using these various processes.
In this connection, the following monographs have already been prepared and are published below:
–   a monograph concerning the sterilization of medical-surgical instruments by ethylene oxide,
–   a monograph concerning the sterilization of single-use medical-surgical instruments, dressings,

and sutures by ionizing radiation.
Other complementary monographs will be published at a later date.
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STERILIZATION OF MEDICAL-SURGICAL INSTRUMENTS
BY ETHYLENE OXIDE
Ethylene oxide is used to sterilize medical and surgical instruments such as syringes and the
necessary articles for perfusions, probes and catheters etc. (1)
Sterilization by ethylene oxide (substance listed in table A of poisonous substances, Section II, decree
of 21 January, 1975, Official Journal of 5 February, 1975) must be carried out by trained and
experienced personnel.
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Initial Contamination
As with other sterilization methods, the effectiveness of this method depends on the initial quantity of
contaminating germs on the product before sterilization.
All stages of manufacture or preparation of the equipment to be sterilized are carried out in such a
manner as to reduce contamination to the absolute minimum; rules on personal hygiene and working
procedures must be strictly adhered to in order to reduce the risk of contamination, with handling of
products being restricted to the absolute minimum.
The articles are packed in materials which are permeable to ethylene oxide and wrapped so as to
maintain sterility after sterilization. The articles will be packed in such a manner that they can be
removed from their package aseptically (2).
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Sterilization Method
Sterilization is carried out using ethylene oxide, generally mixed with air, fluoroalcanes, carbon
dioxide or any other suitable gaseous diluent. The sterilization lot consists of a set of articles which
are identical in composition, shape and intended purpose and which are sterilized at the same time;
they must not undergo any physical or chemical change which would be incompatible with their
subsequent use.
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Test Requirements
1 – Determination of residual ethylene oxide
The apparatus (see figure) consists of a 1,000mL capacity round-bottomed glass flask, having a
diameter of approximately 140mm, which is equipped with three openings, a, b and c, having
standard No. 2 ground glass joints, for connection to a 330mm high condenser, A, for an air inlet
through a capillary tube connected to a 200mL wash bottle (1) and for the introduction of the sample.
The flask is heated by a heating mantle. The condenser is connected to two bubblers (3) and (4), 220
to 230mm high and 25mm diameter, arranged in series having drawn ends and fitted inside two
double-walled vessels containing an ice-water mixture. A bent tube connects the bubbler (4) to a
200mL wash bottle (5) which itself is connected to a water driven vacuum pump.
Sampling – For instruments of homogeneous composition, one sample is taken from each sterilization
lot.
For instruments made of several materials, carry out the test on standard samples of each of the
constituent materials of the instrument, taken from the same package and coming from the same
manufactured batch.
Take an accurately weighed sample, p, between 5 and 20g, and cut it into pieces of about 0.10g.
Method – Introduce a freshly prepared solution of 1.7g of hydroxylamine hydrochloride (R) and
3.3mL of triethanoloamine(R) in 100mL of water into the bubbler (wash bottle) (1), 100 to 150mL of
water into the flask (2), 50mL of water cooled to 0°C into each of the bubblers (3) and (4) and 50mL
of water into the wash bottle (5).
Heat the contents of the flask (2) to boiling point and connect up the vacuum pump (to give a rate of
four bubbles of air per second). When the delivery level in the wash bottle (1) and (5) becomes
stable, introduce the sample, p, into the flask (2). Distill for forty-five to sixty minutes.
Remove the bubbler (3) and (4) and transfer their contents to a 150mL conical flask fitted with a
ground glass stopper. Rinse each bubbler with water and add the washings to the conical flask.
Prepare a standard solution by placing 80mL of water in an identical flask. Carry out the following
procedure for each of the two flasks.
Introduce 1mL of 0.5 N sulphuric acid; close off the flasks hermetically and immerse them in a boiling
water-bath for one hour. Cool to room temperature. Neutralise the solution with 1mL of 0.5 N sodium
hydroxide and transfer the solution to a 100mL volumetric flask. Rinse the conical flask with water
and add the washings to the volumetric flask. Add 2mL of 0.1 M sodium periodate (R). Allow to
stand for 15 minutes shaking frequently. Add 2mL of an 11 per cent W/V solution of sodium sulphite
and make up to 100mL with water. Transfer 5mL of the solution to a 10mL graduated test tube
immersed in iced water. Using a graduated burette, add 5mL in drops of a freshly prepared solution
consisting of 0.10g of chromatropic acid sodium salt, (R) dissolved in 2mL of water and then mixed
with 50mL of sulphuric acid (R). Heat the test tube in a water bath for 10 minutes; cool to room
temperature and make up to 10mL with 18N sulphuric acid (R). Measure the extinction (page II-345)
at the maximum absorption of about 570nm in a 1cm cell using the standard solution as control.
Calibration curve – Dissolve an accurately weighed sample, about 1.4g, of pure ethylene glycol in
one litre of water. Dilute to 100 times its volume. From the diluted solution, transfer 1, 2, 3, 4 and
5mL samples to 100mL volumetric flasks and carry out in each flask the periodic oxidation and the
assay of the formaldehyde formed as described above.Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



Draw a curve on the basis of 1.409g of ethylene glycol being equivalent to 1g of ethylene oxide.
The ethylene oxide content of each sample shall not be greater than 2ppm for each of the materials
examined. This level of 2ppm of residual ethylene oxide is usually achieved only when a suitable
aeration time has elapsed, which depends on the equipment sterilized.
2 – Microbiological Quality Control
This verification is made for each sterilization lot using biological indicators placed inside or on the
surface of the articles to be sterilized. These indicators are either articles deliberately contaminated
by at least 106 Bacillus stearothermophilus spores, or substrates deliberately contaminated and made
of a material as similar as possible to that of the article to be sterilized placed in an identical
package.
Twenty-four hours after sterilization immerse the spores in a suitable medium and incubate this liquid
for forty-eight hours at 56°C. No living spore shall survive.
3 – Sterility Controls
Sterility controls shall meet the requirements of regular sterility tests, page II-238.
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Storage
The integrity of the package must be checked before use.

Expiration date – One year after the date of sterilization; in cases where special packaging is
used, especially double packaging or rigid packaging, the expiration date may be extended to two
years.

(Note: a more recent monograph has modified this expiration dating requirement).
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Marking
Marking shall comply with the appropriate general national and international regulations.
Each sterilization lot and each article shall also be marked with the following information:
–   the sterilization method;
–   the name and address of the sterilization company;
–   the sterilization lot number;
–   the date of sterilization;
–   the expiration date.
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STERILIZATION OF SINGLE USE MEDICAL AND SURGICAL
INSTRUMENTS, DRESSINGS AND SUTURES BY IONIZING
RADIATION

Gamma rays and accelerated electrons are two of the kinds of ionizing radiation used to sterilize
single-use medical and surgical devices such as syringes, needles, perfusion sets, probes, blood
dialysis equipment, as well as dressings and sutures in their single or multiple-unit airtight packaging.
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Initial Contamination
As with other sterilization methods, the effectiveness of this method depends on the initial

contamination load on the product before sterilization. All stages of manufacture must, therefore, be
carried out in such a manner as to reduce contamination as much as possible; the level of microbial
contamination of the environmental air must be checked at regular intervals, regulations on personal
hygiene and working procedures must be strictly adhered to in order to reduce the risk of
contamination; handling during production must be limited to the absolute minimum.

Contamination will be qualitatively and quantitatively measured after manufacture and before
sterilization of the product. The aim of these measurements will be to check that the number of germs
found does not exceed the maximum permissible limit per package. This limit is prescribed in special
monographs, or failing this, determined by preliminary studies; unless specified to the contrary, this
number represents the total number of microorganisms found on the article and inside its immediate
packaging.

The purpose of identifying these contaminating agents is to ascertain that they belong to species
known to be sensitive to the method of sterilization involved or to detect the species of lower
sensitivity.

The frequency with which such determinations are made depends on the nature of the article and
on the experience acquired from previous measurements; it is defined at the time of use.

The articles are packaged in such a manner as to maintain their sterility, and the package is
designed so that the contents can be removed aseptically.
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Irradiation Method
Before proceeding with this sterilization process, a preliminary study is carried out. This involves

irradiating several packages (1) suited to this process, each containing several dosimeters (2),
devices used for physico-chemical measurement of the dose absorbed and which are distributed over
the surface of and inside the package in order to define the conditions under which the minimum dose
to be administered is achieved at any point of the package.

The physical operating characteristics of the selected irradiation facility and the distribution of the
corresponding dose in the centre of the article are noted in a preliminary test report so that adequate
irradiation conditions may be defined.

During industrial treatment, checks are made on each sterilization lot by means of dosimeters in
order to ensure that the doses absorbed at well-defined points of the package units are in accordance
with the doses obtained during the preliminary tests. The sterilization lot consists of all the packages
having similar contents and irradiated successively without interruption, in the same facility, over a
given period of time which must not exceed twenty four hours.

In the case of irradiation facilities using accelerated electrons, checks will be made by means of a
dosimeter suitably placed on each package unit and by continuous monitoring of the main physical
operating characteristics of the sterilization facility, in order to ensure that the physical irradiation
characteristics are always maintained at the values defined in the preliminary tests. The electron
energy level must be such that no induced radioactive effects are produced.

In facilities containing radioactive sources, a dosimeter is fitted to the first five and last five
packages of the sterilization lot and on every tenth package. The irradiation time is accurately
measured.

In all cases, a direct reading “irradiation indicator” is fitted to each package in order to avoid any
possible confusion between irradiated and non-irradiated articles.

The choice of irradiation dose will depend on the initial contamination, the radiosensitivity of the
germs and the safety margin required. For articles manufactured in accordance with the
abovementioned regulations on working procedures and hygiene and on which the number of
contaminants is less than the maximum permissible value, taking the radiosensitivity of the
contaminating microorganisms into account, a minimum dose of 2.5 Mrads, uniformly distributed,
generally affords a satisfactory safety margin. At this dose, the articles must not undergo any physical
or chemical change inconsistent with their subsequent use.
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Test Requirements
Test of microbiological efficacy

This test is made for each sterilization lot using biological indicators placed inside or on the
surface of the articles to be sterilized. These indicators are either articles deliberately contaminated
or test pieces consisting of a material as similar as possible to that of the article to be sterilized or its
package, contaminated by a known number of dried bacterial spores of known radiosensitivity
(Bacillus pumilus E 601 spore or Bacillus sphaericus C1A spores) (1).

In the most general case of a minimum irradiation dose of 2.5 Mrads, use the “growth or no
growth” sterility test with Bacillus Pumilus E 601 or determine the inactivation factor of Bacillus
sphaericus C1A, which must be around 108.

In the case of a higher minimum absorbed dose of irradiation, determine the inactivation factor of
Bacillus sphaericus and check, using an inactivation curve, that is to the required dose.
a) (growth or no growth) Sterility Test with Bacillus pumilus E 601 – Place the indicator in a known

volume of isotonic solution of 0.9% sodium chloride containing polysorbate 80 (0.1%) and shake
so as to bring the spores into suspension. Transfer the suspension into glass petri dishes containing a
suitable gelose culture medium (for example, gelose-trypticase-soy broth); incubate for 48 hours at
37°C or for 5 days at 32°C. No living spores should remain.

b) Determination of the inactivation factor with Bacillus sphaericus C1A – Put the spores into
suspension as described above; prepare successive 1:10 dilutions of the suspension; transfer them
into petri dishes containing gelose culture medium; incubate as described above, count the colonies,
calculate the number of living spores on the indicator and then the inactivation factor as follows:
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Appendix 6

Sweden – Sterilization Guidelines
National Board of Health and Welfare (of SWEDEN)
Department of Drugs

Guidelines for control of the sterility of industrially sterilized single-use medical devices:
26th May 1976

Introduction: The Act of the Riksdag of 7th May 1975 (SFS no. 187; MF no. 51) concerning the
control of industrially sterilized single-use medical devices requires persons manufacturing or
otherwise handling industrially sterilized single-use medical devices to take such precautionary and
other measures as may be necessary to ensure that the products are sterile when used. In its
instructions, the National Board of Health and Welfare has been authorized to issue supplementary
directives relating to the Act. Part of the supervision under the Act – particularly with respect to
sterility – is carried out by the Sterility Section of the Bacteriological Department of the National
Bacteriological Laboratory. The Section has drafted guidelines for sterilization and sterility testing.
The draft has been discussed and, to some extent, revised by the Board’s advisory committee for
control of sterile single-use medical devices and the Board has decided to apply the amended
guidelines, until further notice, in connection with inspections and when scrutinizing applications
submitted to it. When sufficient experience has been gained from inspections and scrutiny, the
guidelines will be revised and given their final form.

1. Sterilization
Sterility
Industrially sterilized single-use medical devices shall be manufactured and sterilized under such
conditions that not more than one living microorganism is present per million units produced. The
pack shall be so designed that the microbiological quality of the products is maintained.
Transport and storage shall also take place under such conditions as not to jeopardize this
quality.

The quality of the raw materials and hygiene precautions during production shall be such that
contamination with particles and foreign matter is prevented and the number of microorganisms
in the product before sterilization is kept low. The ability of the production process and hygiene
conditions to fulfil these requirements shall be controlled at regular intervals. The National
Board of Health and Welfare will issue advice and directives for production hygiene during the
manufacture of industrially sterilized single-use medical devices in due course.

Industrially sterilized single-use medical devices are to be sterilized in the sealed product
pack. Depending on the material contained in them, different products may need to be sterilized
in different ways. The following are examples of suitable methods for industrial sterilization of
single-use medical devices.
Autoclaving
Heating in saturated steam under suitable conditions of temperature and time e.g. 121 °C for 15Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



minutes. The sterilization time is to be taken starting from the time at which the least accessible
parts of the item being sterilized reach the specified sterilization temperature.

The autoclave is to be provided with automatic recorders for time, pressure and temperature.
The physical parameters are to be registered for each batch sterilized.

The reliability of the autoclaving procedure is to be controlled at regular intervals using
Bacillus stearothermophilus spore preparations intended for control of autoclaving procedures
and of identical resistance to the preparations that can be requisitioned from the National
Bacteriological Laboratory (1). The spore preparations are to be placed in those places where
the sterilization conditions have been found by experience to be least favourable.
Dry sterilization
Heating in dry air under suitable conditions of temperature and time e.g. 160°C for 2 hours or
180°C for 30 minutes.

Dry-sterilizers shall be of such design that an even temperature is reached in all parts of the
oven. The apparatus shall be provided with instruments for measuring time and temperature. The
physical parameters are to be recorded for each sterilization batch, preferably with an automatic
recorder.

Control of the physical parameters is normally sufficient. The reliability of the dry-
sterilization procedure is to be controlled at regular intervals, however, using Bacillus subtilis
spore preparations intended for control of dry-sterilization procedures and of identical resistance
to the preparations that can be requisitioned from the National Bacteriological Laboratory (1).
Ethylene oxide sterilization
Sterilization by means of ethylene oxide gas at suitable concentrations and temperatures and for
suitable times, and under conditions ensuring a homogenous gas mixture and suitable humidity in
the products sterilized. It is particularly important to check the number of microorganisms on the
products before sterilization at regular intervals for products which are to be sterilized by
ethylene oxide.

The physical parameters are to be controlled and recorded for each batch sterilized,
whenever possible with automatic recorders.

The reliability of the sterilization procedure is to be controlled for each batch sterilized using
spore preparations intended for control of ethylene oxide sterilization procedures. The properties
of the spore preparations shall be such that they will reveal the presence of insufficient humidity
in the products sterilized. Suitable spore preparations can be requisitioned from the National
Bacteriological Laboratory (1). The number of spore preparations is to be varied according to
the number of units in the sterilization batch, the size and design of the sterilizer, and experience
of the reliability of the sterilization procedure with the apparatus used. At least 6 spore
preparations per sterilization batch are normally to be used. When using larger sterilizers, 6
spore samples per cubic metre of goods sterilized should be used. If the efficiency and
reproducibility of the sterilization procedure can be documented by long experience of such tests,
the number of spore preparations may be reduced to 3 per cubic metre of goods sterilized, but
with a minimum of 6 per sterilization batch. The spore preparations are to be placed in those
places where experience has shown the sterilization conditions to be least favourable e.g. inside
packed disposable syringes, tubing etc.Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



Ionizing radiation
Gamma- or electron-irradiation in accordance with the recommendations issued by the
International Atomic Energy Agency, 1967, in the Code of Practice for Radiation Sterilization of
Medical Products (2).

The reliability of the radiation sterilization procedure is to be controlled in accordance with
the requirements of the Code of Practice. The microbiological efficiency of the apparatus shall
be established before it is taken into operation and after any essential alterations to the radiation
sterilizing equipment (3.1 note 1), but not less often than once a year. Information on suitable
spore preparations may be obtained from the National Bacteriological Laboratory (1). The
number of microorganisms on the product before sterilization shall not exceed the level at which
the radiation dose used will give sterility as defined in the first paragraph of these guidelines
under the heading “Sterility”. For products with less than 50 microorganisms per unit, for
example, a radiation dose of 3.2 Mrad from a cobalt apparatus for sterilization of dry products is
to be used. If the manufacturer, on the basis of data collected during long experience with the
production concerned, is able to document that the magnitude and type of microbiological
contamination (e.g. an average of < 1 microorganism per unit) before sterilization and the
humidity, temperature, dose-rate etc. during sterilization are such as to satisfy the sterility
requirements as defined in the first paragraph under the heading “Sterility”, a minimum dose of
2.5 Mrad may be considered.
Documentation of the sterilization procedures
Before being taken into operation, the sterilization procedures used are to be thoroughly tested so
that efficient sterilization of the product concerned can be documented. Instructions for carrying
out the tests and unambiguous criteria for assessment of the results of routine controls and
measurements are to be drawn up. The results are to be recorded for each batch produced and
filed for as long as the batch may be expected to be available on the market, but not less than 3
years. The records are to indicate where and how the individual spore preparations were placed
in the sterilizer.

2. Sterility Testing
Industrially sterilized disposable articles shall comply with the test for general microbial
contamination as stipulated in the Nordic Pharmacopeia.

For product sterilized by autoclaving, dry-sterilization or radiation sterilization as stipulated
above, sterility testing of each batch is not normally necessary. For production batches sterilized
by other methods of sterilization, each batch is to be submitted to sterility tests according to the
methods specified in the Nordic Pharmacopoeia or alternative methods of equivalent sensitivity.
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DISCUSSION
SESSION I

Q. by J.E.W. Nygard – USA
Dr Dodson, you mentioned that manufacturers are releasing radiation-sterilized goods without

completing a validation of the process or doing a sterility test. I was wondering what the basis of that
release is and how it is related to Australian regulations.

Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



A. by L.F. Dodson – Australia
There are no regulations in Australia prescribing just how sterilization must be performed. The

requirement is for the product; it must be sterile and it must comply with the sterilization test. There
is, of course, considerable influence of government over this process by way of inspections under the
Code of Good Manufacturing Practice, but we have no registration system in this country that requires
people to submit for each product what they actually do about it. This was a proposal that was, in
fact, rejected by government. The resources we have available do not, in fact, permit us to chase up
the devices as closely as we could. The resources are shared between the State and Commonwealth
governments. In fact, there has been very little regulation of the device field in Australia.

_______________
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Q. by D. McKay – Australia
Mr DeRisio, we have heard mention this morning of the concept of tailoring the level of sterility

assurance to the nature of the product or its intended use. This strikes me as being an exceedingly
difficult quantity to measure in any logical fashion. Arbitrary levels have already been set up, like this
level of 10−6, that is generally accepted. It is just a convenient number, I suspect, rather than being
related to anything more logical than that. Is there any sound way of developing these required
sterility assurance levels or are they just going to be entirely arbitrary?
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A. by R.J. DeRisio – USA
The Bureau of Medical Devices has not listed specific levels of sterility assurance for particular

devices, and maybe if we ever do promulgate standards or work in the development of a voluntary
standard development, such a document could define a level of sterility assurance and could define
whether or not a particular product should be nonpyrogenic.

In the Agency, we have always regarded that any invasive device, and that is one that is defined as
crossing a natural body barrier, must have a sterility assurance of 10−6 (probability of one in a
million). For certain devices that are noninvasive, such as drapes which are used in a hospital theatre
but which do not come into contact with the patient, the level of sterility assurance of 10−3 has been
accepted.

In the medical pharmaceutical products, of course, we recognize that aseptically filled sterile
filtered products are probably processed at a level of sterility assurance of perhaps as good as 10−4

and so the argument has been made that perhaps some devices that cross body barriers, and are used
to administer these drugs, such as small volume parenterals, might themselves not have to have a
sterility assurance level of 10−6. Personally, I somewhat resist that, and because we recognize that
probability of a contamination and of an infection is an additive concept, where practical the
manufacturer should do what he can to maintain an acceptable level of sterility assurance.

We see also that the new dose-setting technologies are an attempt to provide a lower sterility
assurance level for devices than the traditional 10−6 level. One other thought currently with medical
devices is that many processes are validated to 10−6 on the basis of a biological indicator in an
overkill situation. We recognize that even if there is variability in the cycle or the bioburden, the
degree of sterility assurance is far better than one in a million. I believe, the crucial area is the
devices that are in vitro products and are handled aseptically. We do not expect a sterility assurance
level better than 10−3.
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Comment by L.F. Dodson – Australia
I am not so impressed by the concept of the sterility as one in 106 because it is a mathematical

extrapolation of pretty inadequate data, and I think it is inadequate because I do not believe that it is
feasible to determine accurately the bioburden on particular products. I just do not think, we get a
very good estimate by bioburden and, for example, David McKay will be referring to something that
happened many years ago. Someone complained that a ‘giving-set’ was not sterile, and it was sent to
us by a microbiologist in Tasmania who said: ‘this is not sterile; you had better check it out’. So, we
checked it out by using what is still the standard US sterility test for these things, running a solution
through it, and we could not grow any organisms; and then he pointed out that we should incubate it
with the medium inside the material instead of inside the tube; and as soon as we filled the tube up
and clipped the ends and threw it in an incubator for a few days, we grew large numbers of
organisms. Now, if the tests for determining bioburden are susceptible to errors like that, and I
suspect often that microorganisms are very firmly attached to devices, I wonder, are we perhaps
rather bemused by these figures. They are only as reliable in my mind as the estimate of bioburden,
and if that estimate is not accurate, can we be sure that this concept is as valid as all that.

_______________
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Q. by S. Riley – Australia
Mr DeRisio, you stated that the FDA has no data available stating any safe use of resterilization of

single-use items. Is it your opinion that the FDA will look into this and state any safe use of
resterilization of single-use items?
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A. by R.J. DeRisio – USA
This compliance policy guide was originally prepared in response to some criticism from health-

care providers that we were over restrictive and that our position could result in very high health-
care costs, and I think that this is why the statement was made that there were no data available. In
fact, we have not done any work within the Agency because of our limited laboratory work, and if
work had been done, it was not readily published or available to us.

Now, I want to make sure that I did not miss the last part of your question; could you repeat the
last part of your question and comment, please.
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Q. by S. Riley – Australia
Is it likely that the FDA will set any regulations or specifications for safe reuse of single-use

items?
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A. by R.J. DeRisio – USA
I do not believe that we would attempt to do that. We tend to be very industrially and

commercially oriented, even in our staff. Although we do have health professionals (nurses and
doctors), I do not think that we have the resources in terms of laboratory or even in terms of
availability of samples to conduct studies on resterilization, so we have looked to the health
professional associations to do that kind of work and to the device manufacturers themselves.
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Q. by B. Rawal – Australia
I am interested to know if there is any development with regard to the role of microbial products

in terms of toxins. Mention was made this morning about the presterilization microbial load. I assume,
it refers to the number of viable organisms, but in such a situation we could also have preformed
microbial products, like toxins, and these could be very important in terms of products that are
sterilized for human use and sterilized by gas sterilization, which may not have any effect on toxins.

My question to the panel, therefore, is whether or not preformed microbiological toxins are
required, or would be required in the future, to be examined before sterilization by gas or irradiation.
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A. by P.T. Doolan – France
I know of no European regulation in draft form or in place right now that envisages that subject.

When you say toxins, are you referring to dead microorganisms.
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Q. by B. Rawal – Australia
I am referring to staphylococcal toxins often found in products used for implants and in things of

that nature. I am aware that there is no statutory regulation at present, but I am talking about the
possible development in the future.
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A. by P.T. Doolan – France
I think, the answer is ‘No’. I am sorry not to be able to answer it more fully, but I am having

difficulty in getting all of the question.
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A. by L.F. Dodson – Australia
I know of no evidence for the need to do that except that there is a need to have a very low

bioburden to reduce the possibility of endotoxins occurring, which is of course checked by pyrogen
testing.
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A. by R.J. DeRisio – USA
We have always advocated that manufacturers control the bioburden to prevent the possible

increase in endotoxins because of a large bioburden on a device. Fortunately, most of the products
that we regulate tend to have low bioburden to begin with and also do not support growth. Now, with
the LAL Method there is a provision for approval of a process control release procedure where the
manufacturer would look at possible sources of contamination with particular bacterial endotoxins
from gram-negative species, but it could also include other types of toxins, presumably from a
microbiological control standpoint. However, from the endotoxin standpoint, we would encourage the
firm to look at components and personnel, water that might be used for rinsing the device, or at a
dipping process, or to look at possible sources of contamination in the product that might be masked
by the time the finished product was tested. Firms that elect to validate a process control procedure
for pyrogen control or endotoxic control can then reduce other finished product testing requirements
to as few as just one device per lot, instead of the current USP provision for ten subassemblies, for
example, per production day.

I know of no incident in my country of staphylococcal toxin contamination. It has been reported in
other products that we regulate, such as foods, when a product after formulation was held in warm
conditions and not sterilized for some reason for an unduly long period.
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SESSION II

Hospital Sterilization
Introduction to Session
John K. Clarebrough

This Symposium is timely as I believe that the subject of infection will be of continuing concern over
the next ten years. It is wise to adopt preventive measures rather than be forced into the defensive
position of having to react to an unforeseeable situation. We have been put in this situation by the
current epidemic in hospitals of multiple resistant strains of Staphylococcus aureus.

Thus, infections are, and will continue to be, a major problem. There are clearly many factors to
be considered and in looking at the hospital scene many changes have occurred over recent years.
One of the most significant changes is the escalating use of non-natural materials, the use of artificial
aids towards healing, and the replacement of human parts. These replacements may be by human
organs or more frequently by synthetic products. In the case of transplantation procedures, success
often depends on the interference with a patient’s resistance to infection by chemical or other means.

The implantation of foreign materials, such as hips, knees, heart valves, arterial prostheses, is
now being performed on an escalating scale. Just over one thousand patients had artificial valves
inserted in this country in 1980-81.

In addition to routine surgical procedures, renal dialysis, cardiopulmonary bypass, and total
parenteral nutrition all demand the insertion or infusion into the patient of non-natural products in
situations where infection can be the real problem and the outcome may be devastating.

The safe passage for a patient through today’s modern hospital and the freedom from major
infection depend on many factors, such as the environment of the hospital, freedom of the staff from a
carrier role, meticulous surgical and medical techniques, and particularly the sterility of those
substances that will be inserted or infused into the patient.

There is an assumption that products used in hospitals are ‘sterile’ but in fact may not be. Jocelyn
Kelsey in his classic paper on ‘The Myth of Surgical Sterility’, pointed out that sterile meant by
definition ‘freedom from microorganisms’. This, he went on to show, was not always possible, and
that in practical terms he suggested a new term, ‘the state of having been sufficiently freed from
micro-organisms to be deemed safe for some special purpose by some competent body’.

It is implicit that the setting of standards by an appropriate authority and a review of these
standards are maintained. These concepts are termed ‘quality assurance’ and should be applied toSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



health care, and should be particularly operative in health-care delivery systems.
In the ten years since Jocelyn Kelsey made his statement, we have come a long way. Hopefully,

we may in the field of hospital sterilization attain practical use sterility.
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Good Hospital Practice – Australia
Robert C. Pritchard

Royal North Shore Hospital
St. Leonards, New South Wales, Australia

Sterile manufacture in hospital pharmacies in Australia is covered by the Code of Good
Manufacturing Practice for Therapeutic Goods of the National Biological Standards Laboratory.
Compliance is expected to be much more rigidly enforced in the future. There is no similar
nationwide code for the operation of hospital Central Sterile Supply Departments (CSSD) although
standards for sterilizing equipment and packaging materials are laid down by the Standards
Association of Australia. There are substantial variations in CSSD operation between the States, and
a number of problems are faced by personnel. It is anticipated that the Australian Council on Hospital
Standards may be influential in the future in promoting a more uniform approach to hospital
sterilization.

Compliance with codes of good practice is complicated by the lack of satisfactory evidence for a
beneficial effect on patient safety of many of the procedures involved, and by the lack of suitable
guidelines for quality control of very small scale operations. Both regulators and manufacturers
would be unwise to underestimate the confusion about many aspects of decontamination, sterilization,
and the usage of sterile materials that may occur in Australian hospitals.

In a symposium such as this, ‘good practice’ in sterilization inevitably has to be defined as a code
of regulations relating to the manufacture or subsequent processing of goods designated as ‘sterile’.

The major stimulus for the formulation of such codes has been the occurrence of episodes of
serious infection, usually involving patient deaths, that can clearly be attributed to materials used in
patient care. When such a disaster occurs, then obviously steps must be taken to prevent a recurrence.

We can therefore say that the code of regulations which constitute good practice in sterilization is
aimed at preventing the recurrence of episodes of infection caused by equipment or materials used in
patient care.

This intention of good practice is one that cannot be argued with. It can, however, be argued that
this essentially passive approach – waiting until a disaster occurs (and remember that usually deaths
will occur before the true nature of this sort of problem is recognized) – is inadequate. The aim of
such a code of regulations should be to prevent any possibility of infection occurring due to
microorganisms derived from items used in patient care. Unfortunately, the absolutes that are implied
in this statement are totally impracticable, so that in the end we are left with a statement that is filled
with some very uneasy compromises – such as this one.

‘Good practice in sterilization is a code of regulations aimed at preventing the failure of
procedures which were designed to ensure that designated equipment and materials achieve a state
corresponding to the current accepted definition of sterility.’

The current definition of sterility is, of course, very much the overall concern of this Symposium.
It is not the absolute state that the dictionary would have us believe, and this fact is not sufficiently
appreciated in medical practice. Jocelyn Kelsey gave a practical definition of sterility as ‘the state of

Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



having been sufficiently freed from microorganisms to be deemed safe for some special purpose by
some competent body’. Again some very uneasy compromises are implied, so perhaps we should
look at some of the questions that are raised by the concept of good practice as a code of regulations.

The first question is who should define the elements constituting good practice in any given
process. In theory, of course, the elements would be produced by agreement between the practitioners
of the process and the regulatory authorities. In practice, this sometimes does happen, at least in part.

The second question concerns some of those uneasy compromises that we skated over earlier.
What sort of evidence do we have on which to base our working definition of that apparently simple
word ‘safe’? What sort of things need to be ‘safe’?

In terms of preventing the recurrence of established disasters, we do have at least some
information on which to base decisions, but when we go beyond this to consider sources of potential
infection, then the quality of evidence becomes very important. Let us take a simple example. Let us
postulate that standard bed linen is a potential source of infection to hospital patients. It would be
easy to devise experiments supporting this hypothesis. Why therefore do we not sterilize all bed
linen?

The cost would be formidable, and cost is an increasingly important consideration. There are
practical problems of processing and storage and perhaps the most formidable problem of all is the
difficulty of overcoming the inertia inherent in all established hospital routines.

We would hastily re-examine our evidence and decide that the simple decontamination of standard
laundering is quite adequate.

Achieving a practical compromise by setting reasonable minimal standards is quite easy in this
case. For many processes and many items, it is much more difficult. Who should determine the
minimal standards – the regulators who have their eyes firmly fixed on the potential infection, or the
regulated who have their eyes equally firmly fixed on the practical problems.

I must say at this stage that I have considerable sympathy with the regulators. Regulation of
Australian hospitals is a particularly complex subject. I shall not attempt to explain the system of
health-care delivery in this country, partly because I am not sure that I understand it myself, but
something does need to be said about the hospital system. The great majority of acute care hospital
beds in this country are in public hospitals for which the various State Departments of Health are
responsible for funding, private hospitals accounting for only a small proportion of acute care beds.
Public hospitals are controlled by local hospital boards responsible to the State Governments. The
State Departments of Health can exercise only a very limited direct control over the hospitals for
which they are responsible, mainly in such areas as staff establishment and the purchase of major
items of equipment.

Thus, there is a curious anomaly. Private hospitals (and manufacturers) are regulated by means of
a licensing system. There is no licensing system for public hospitals and these hospitals until very
recent times have been virtually unregulated in the terms that we are talking about today. If a State
Department of Health was dissatisfied with the activities of one of its own hospitals and that hospital
refused to mend its ways, then the only recourse open to the Government was to dismiss the hospital
board.

For a number of reasons, this system has been found to be unsatisfactory in recent times and
changes are in progress that will provide a more direct control over the day to day running of public
hospitals.Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



One of the first areas where these new policies will be manifested will be in the area of sterile
manufacture.

I have already stressed the importance of the occurrence of disasters as a stimulus to the
formulation of codes of good practice. Such an episode occurred last year in a hospital in New South
Wales involving a parenteral solution manufactured in the hospital pharmacy.

Of all hospital departments, the pharmacy is the area where the greatest risk is likely to arise from
faulty sterile manufacture.

Certainly, it is the area where there has been most activity in defining good practice in recent
years. In 1975, an epidemic of hospital-acquired urinary tract infections due to Pseudomonas cepacia
was tracked back to a contaminated pharmacy water still. Coincidentally a code of disinfection
practice was being prepared for the New South Wales Health Commission. Following the
introduction of this code, amendments were made to the Therapeutic Goods and Cosmetics Act,
1972, dealing with antiseptics and disinfectants. These regulations included a new set of performance
standards, a labelling standard, and prohibition of certain representations. One such prohibition
concerned the use of the word ‘sterilization’ in connection with disinfectants, except in specific cases
where use of a product as directed can be shown to achieve sterility with accepted probabilities of
success. Written authority for this use is required.

More recently, a recommendation has been made that all antiseptics (defined as agents used for
preventing, arresting or treating infections, or destroying or inhibiting pathogenic microorganisms on
the human body or its mucous membranes) used in hospitals should preferably be sterile. A further
guideline states that antiseptics for use in body cavities must be sterile.

The problems involved in sterile manufacture in hospital pharmacies have, of course, been
recognized for some time. The Code of Good Manufacturing Practice for Therapeutic Goods
formulated by the National Biological Standards Laboratory has an appendix entitled ‘Supplementary
Notes for Hospital Pharmacists’. The Australian Council on Hospital Standards in its ‘Accreditation
Guide’ specifically refers to adherence to this Code and its Supplementary Notes as one of the
essential components of Pharmacy Service policies and procedures. Accreditation in this country is
voluntary and no penalties result from failure to achieve it. Nevertheless, the Council has been
extremely influential.

While the appendix is designed to make the Code applicable to bulk compounding and packaging
of sterile therapeutic goods, there is also a section devoted to the addition of drugs to intravenous
fluids, also regarded as a manufacturing process. Intravenous administration of drugs is nowadays the
general rule in hospitals in this country. Intramuscular injections have become relatively uncommon.
This has been a worrying trend since there are a number of risks involved in intravenous
administration, quite apart from that of bacterial contamination.

The most hazardous procedure in the hospital pharmacy, however, is the bulk compounding of
sterile fluids for parenteral administration. In recent years, this has most commonly been undertaken
in the preparation of intravenous feeding solutions for total parenteral nutrition.

It should be made clear that only a relatively small proportion of hospitals in Australia are
engaged in bulk sterile manufacture of this sort. At the Royal North Shore Hospital, it has been the
policy for some years that sterile parenteral fluids should be obtained from commercial sources. We
do, however, carry out aseptic admixture procedures to prepare specific formulations for individual
patients.Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



Following last year’s incident, referred to earlier, the Health Commission of New South Wales
issued a circular requesting hospitals to cease all bulk manufacture of large volumes of intravenous
fluids. At the same time, the Health Commission convened a Working Party to investigate the
manufacture of intravenous fluids in hospitals.

When the Working Party had completed its review of the bulk manufacture of large volume
intravenous fluids in public hospitals, the Health Commission issued a further circular. The phrase
‘are requested’ was no longer used. The word ‘required’ was used instead. Specifically, the Health
Commission required ‘public hospitals to cease all bulk manufacture of sterile therapeutic goods until
an approval has been given in each specific case. Any approval will be subject to:

1. a general policy on the bulk manufacture of sterile and other therapeutic goods to be determined
by the Commission;

2. compliance with the Australian Code of Good Manufacturing Practice for Therapeutic Goods.’

Hospitals were further advised not to commit resources to bulk manufacture pending finalization
of policy guidelines.

In the meantime, the Working Party, now enlarged, was investigating the whole area of
pharmaceutical manufacture in public hospitals in New South Wales. The first guidelines were issued
on 10 May 1982 and outlined good manufacturing practices for the preparation of bulk nonsterile and
nonbulk sterile pharmaceuticals.

A draft report covering bulk sterile manufacture has been issued, causing some consternation.
The first surprise lay in the definition of bulk sterile manufacture.
Bulk manufacture in relation to sterile parenteral products was defined as including preparations

made in advance for potential patients and total parenteral nutrition preparations made more than 24
hours in advance. So defined, the practice followed that aseptic admixture of commercial sterile
fluids was regarded as bulk manufacture, unless the solutions were for immediate use. The working
party defined immediate use as ‘use within 24 hours’.

The 24-hour rule is an interesting one. It seems to stem from the experience in the United States
during the epidemic of septicaemia attributed to microbial contamination of elastomer linings in the
screw caps of commercially prepared intravenous solutions in 1970 and 1971. In investigating this
epidemic, the US Center for Disease Control (CDC) found that patients who had their intravenous
fluid administration sets changed within 24 hours had a substantially lessened risk of septicaemia.
The CDC consequently recommended that intravenous administration sets should be changed
routinely every 24 hours on the basis that between 4 and 10% of intravenous fluid in use contained
microbial contamination. The publicity consequent upon this episode and similar incidents in Great
Britain did a lot of damage to the image of commercial sterile manufacture. This apparently poor
record of quality control, along with an increasing requirement for specialized fluids, tended to
encourage hospitals to undertake manufacture themselves.

In fact, regrettably, although rare, infection does occur in hospital patients associated with
intravenous therapy. Clinically significant sepsis occurs as a consequence of intrinsic contamination
of intravenous fluids. The great majority of significant episodes appear to be due to extrinsic
contamination resulting from manipulations of the administration set or from infection of the cannula
puncture wound. A recent study of the rate of contamination of intravenous infusion fluid associated
with a change of administration set every 48 hours as opposed to a change every 24 hours showed noSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



significant difference. This study showed a 2% contamination rate of fluids in 600 patients, but in no
case did clinical bacteraemia occur. Some idea of the difficulty of obtaining useful evidence in this
type of situation can be gauged from the estimated requirement for a population of 50 000 patients to
obtain information on clinically significant sepsis.

Instituting a policy of changing administration sets every 48 hours offers substantial savings in the
cost of equipment and in personnel time. This interval of change has now been recommended by the
CDC in its most recent guidelines for prevention of intravascular infection.

Twenty-four hours is thus no longer quite the magic interval that it once was. It is even less so
when one considers that the high dextrose concentrations in total parenteral nutrition solutions are
actually toxic to bacteria. (This is not true of lipid solutions, of course.) I believe that there is no
evidence to support the implication that ‘immediate use’ of total parenteral nutrition solutions
circumvents the problems of microbial contamination or confers additional patient safety.

This broadened definition of bulk sterile manufacturing presents some very definite problems for
hospitals faced with the need to provide a seven-day-a-week service. The Australian working
weekend is peculiarly expensive. The industrial awards under which most hospital employees work
provide for an additional ‘penalty’ payment of 50% for hours worked on Saturday and 75% for hours
worked on Sunday. Furthermore, in any hospital pharmacy there will only be a very limited pool of
personnel sufficiently experienced in aseptic procedures to be entrusted with the task.

The thrust of the Working Party’s draft recommendations has thus been to divide the items likely to
be manufactured in hospital pharmacies into four lists (see Appendix). List A are products under the
heading of bulk nonsterile manufacture. List B includes the nonbulk sterile products defined as either
volumes of 100 mL or less or larger volumes for ‘immediate’ use. Both of these categories are
covered by the previously published guidelines and endorsed by the Working Party. It added an
additional comment for the List B nonbulk sterile pharmaceuticals. The Working Party said that:
‘random routine laboratory testing should be carried out on products within this group’.

This is all that was said on the subject. I presume that what was said was intended to be a vague
gesture in the direction of quality control and I find this very worrying. Quality control and quality
assurance are subjects that are too frequently misunderstood in hospitals. Many hospital personnel
find the concepts and their implications very threatening, and there is a great temptation to reassure
oneself with easy but essentially meaningless procedures. I believe that either proper quality
assurance regimes should have been specified here or the subject omitted completely.

List C includes unusual or limited-batch sterile pharmaceuticals and also, by default, aseptic
admixtures that will be kept for more than 24 hours before administration.

The Working Party stated that these products should be manufactured in as close a conformity as
practicable to the Australian Code of GMP. Further, hospitals must receive prior approval from the
Health Commission before embarking on such manufacturing. Finally, these hospital pharmacies will
be subjected to regular inspection under the Code of GMP.

All this seems very reasonable. However, on several readings of the Supplementary Notes for
Hospital Pharmacists and the Guidelines on Tests for Sterility, I cannot find the sort of guidance for
process validation that seems to be called for.

The final group of products, in List D, includes standard bulk sterile solutions. It is recommended
that these products should only be prepared in full compliance with the Code of GMP. The Working
Party considered that at present no NSW hospital facilities meet full Code requirements.Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



All in all, the working party recommendations add up to very stringent controls on manufacturing
in hospital pharmacies that are far more stringent than the recently published CDC guidelines on
infection control relating to the pharmacy (containing a recommendation that fluid should not be
routinely cultured, either before or after admixing). It seems certain that part or all of these
recommendations will be adopted. Needless to say, at present hospital pharmacists in New South
Wales and in the other states are anxious and confused, and the sooner firm decisions are made and
guidelines issued on process validation, the better.

There is no doubt that considerable cost will be involved. Will the cost be justified in terms of
additional patient safety? Frankly, I do not know.

Over the last six years there has been increasing pressure in the area of infection control to
produce evidence that measures advocated to prevent infection do in fact achieve this end. It has
become clear that hard evidence of efficacy exists for only a handful of measures. Further, the task of
collecting convincing proof in many instances appears to be beyond our resources, as exemplified by
the simple problem of the interval for changing administration sets.

I have concentrated on sterile manufacture in the hospital pharmacy because that is where most of
the activity in relation to good practice in Australia has been. There is really no equivalent to the
Australian Code of GMP regulating the manufacturing processes of hospital sterile supply
departments, although there are some elements in the Code which are clearly relevant.

When we look at the elements of good practice in hospital sterilization there is really only one
area that could be considered to be codified on a nationwide base and that is equipment and
materials. The Standards Association of Australia has been laying down for some years now
requirements for sterilizers, packaging materials for sterile goods, and other equipment. The purchase
of major items of equipment by public hospitals is one area where State Departments of Health
usually exercise direct control. Hence the recommendations of the Standards Association are of some
importance in determining the practice of sterilization.

The Accreditation Guide of the Australian Council on Hospital Standards has virtually nothing to
say specifically about Central Sterile Supply Departments. The CSSD is lumped together with
housekeeping, laundry, maintenance, infection control, sanitation, and fire safety under the heading of
‘Environmental Services’. In all fairness, it should be made clear that hospital accreditation has
mainly concentrated on organizational and safety aspects in most departments.

Failure of sterilization procedures in a hospital CSSD is far less likely to engender recognizable
clinical consequences than failure of sterilization procedures in a hospital pharmacy. The most
critical part of the sterilization of reusable equipment is the initial cleaning rather than the
sterilization process itself. Hospital staff can generally be relied on to refuse to accept obviously
dirty instruments or wet ‘sterile’ linen. There are, however, some areas where a code of good
practice might be welcomed, apart from the areas of safety and basic efficacy of the sterilization
process that are already regulated.

The first of these which might be termed ‘professional standards’ is the recognition of hospital
sterilization work as a skilled activity, requiring appropriately qualified personnel who have
undertaken recognized programmes of training. The Sterilization Research and Advisory Council of
Australia has been active in promoting this concept but has not yet been totally successful. There are
still some parts of the country where the sterile supply department is regarded as a simple adjunct of
the operating theatres, requiring no particular expertise.Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



Some of the other problems of hospital sterilization departments in Australia are universal. It is
equally difficult to try to determine standards in relationship to storage facilities, and consequently
shelf life, here, as it is anywhere else in the world. One of the greatest failures of the sterilization
industry as a whole has been its inability to present a clear message to consumers on this matter.

Similarly, the problem of decontamination of delicate and sensitive instruments has been handled
no better in Australia than anywhere else. In most hospitals, the CSSD is neither offered, nor accepts,
any responsibility for cleaning and decontamination of flexible fibreoptic endoscopes. The problem
in Australia is that the demands of the physicians for a very rapid turn-around time for these
expensive instruments are not compatible with the requirements for effective decontamination. The
manufacturers of these instruments have been somewhat unhelpful.

New challenges are emerging all the time as invasive monitoring procedures are increasingly
carried out on susceptible patients using pressure monitors, television monitors, etc., clearly not
designed with the problem of sterilization in mind.

As these procedures become more common, the cost rises. Frequently, the procedures involve
quite expensive items of equipment that are intended to be disposable, for example a Swann-Ganz
catheter may cost the hospital $97. Sterilization of these items for reuse appears to be a very
attractive proposition and the manager of the CSSD is often put under intense pressure to co-operate.
This problem was recently tackled by the Health Commission of New South Wales in a circular dated
19 May 1982. This circular advised that’ single use’ items should not be reused unless all criteria for
safety and efficacy of the processed product could be met. An additional criterion was added on cost
effectiveness, namely that reuse and/or sterilization had to offer significant savings. Unfortunately,
this circular did not receive the publicity it deserved.

The extent to which hospitals prepare their own sterile disposable items varies widely. In October
1981, the National Biological Standards Laboratory, in carrying out tests on wound dressings
labelled or required to be sterile, found many in a state of contamination which was described as
‘heavy and serious’. Interim controls were instituted, requiring sterility testing of sterile goods and
testing of nonsterile goods for the presence of pathogenic bacteria.

Revised controls are now proposed. Nonsterile goods will be required to have a total count of
less than 10 000 aerobic microorganisms per gram. The draft proposals make no attempts to
distinguish between pathogenic and nonpathogenic organisms. Absolute bioburden will be the
criterion. As a clinical microbiologist, I must agree whole-heartedly with this concept.

Of three categories of goods, there are goods that are required to be ‘sterile-in-use’. These
involve dressings intended to be applied to broken skin or burns and goods used in surgical
procedures.

Another category will be goods required to be sterile-in-use, which are supplied to hospitals in a
nonsterile state. Such goods will be required to be clean and have a total count of aerobic organisms
of less than 10 000 microorganisms per gram. It is proposed that such goods shall be labelled ‘Non-
sterile – For Hospital Use Only – Sterilise Before Use’. The intention of this labelling seems quite
straight forward. However, at least two companies which introduced this type of labelling as an
interim measure have discovered that the sudden appearance of such labels in hospital stores
departments leads to confusion and outrage.

This category is a valid one, but I believe that any manufacturer who proposes to supply goods
with such a label would be well-advised to make absolutely sure that the recipients understand whatSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



it means. The events of the last 18 months in the area of sterilization have, unfortunately, made it clear
that the present lines of communication within the health-care industry cannot necessarily be relied
upon to ensure effective dissemination of information.

The application of microbiological quality controls to this class of goods will be of help to
hospitals preparing their own sterile disposable goods. However, the onus will be on the hospitals to
examine the uses of items in this category to ensure that sterilization is performed where the
subsequent use requires it.

In summary, sterile manufacturing has been performed in Australian hospitals in the past with
surprisingly little, if any, regulation. In response to recent events, however, one expects that
considerably more attention will be paid to good practice in this area.
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Appendix

List A
The products that it is considered could still be prepared properly and safely under present facilities
in hospital pharmacies are:-

(i) ENT preparations
(ii) oral preparations
(iii) rectal and vaginal preparations
(iv) topical preparations
(v) disinfectants
(vi) repacking of prepared pharmaceuticals from bulk

List B
There is a second group of products that also may need to be prepared regularly in hospital
pharmacies but to which certain conditions for their preparation should apply. These products with
their conditions are:-

(i) single units of TPN for “immediate use” as defined in Section 3 – need to be prepared
aseptically, by suitably trained staff, under laminar flow conditions

(ii)
cytotoxic drugs
– need to be prepared aseptically under suitable conditions as specified in a separate report
on cytotoxic drugs

(iii)
I.V. additives (when prepared in the Pharmacy) for “immediate use” (not bulk)
– need to be prepared aseptically as single bottles, by suitably trained staff, under laminar
flow conditions

(iv) eye drops
– only single units aseptically filled, or bulk quantities which are terminally sterilised.

(v)
ampoules and vials
– small batches (approximately 10 units) which are terminally sterilisedSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



– prepared aseptically for “immediate use” only

(vi) radiopharmaceuticals
– made up by specially trained personnel under appropriate conditions

(vii) antiseptics
– should preferably be sterilised

(viii) bladder irrigations
– prepared aseptically in small batches which have an expiry date of less than 5 days.

These operations should be conducted, where applicable, in conformity to the Guidelines in
Commission Circular 82/133. The Commission should extend the present Guidelines by including, in
due course, a guideline on random monitoring of chemical and microbiological quality. In the
meantime, protocols may be developed by hospitals to provide an index of quality of the products
made.

List C

Under some circumstances, hospital pharmacy departments may be required to manufacture unusual or
limited batch sterile pharmaceuticals not included in the previous list of products.

These may include:-
(i) specialised bulk TPN and specialised Large Volume Parenteral fluids
(ii) specialised bladder irrigations
(iii) ampoules and vials in batches of greater than 10 units
(iv) bulk eye drops, aseptically filled
(v) specialised peritoneal dialysis solutions

When such hospitals must meet the need of their patients for those products they should be
manufactured in as close a conformity as practicable to the Australian Code of Good Manufacturing
Practice, and the hospitals must have received prior approval from the Commission. These hospitals
should be regularly inspected under the Code.

List D

The following products should only be made in approved commercial or hospital manufacturing
facilities and in full compliance with the Australian Code of Good Manufacturing Practice. At
present, no NSW hospital facilities meet full Code requirements. Therefore, none of the products on
this list should be made in hospitals:-

(i) bulk standard-formula TPN solutions
(ii) bulk bladder irrigations
(iii) bulk cardioplegic solutions
(iv) peritoneal dialysis solutions

The Working Party agreed that these products would usually have standard or standardisable formulae
and hence could be made available commercially.
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Introduction
The phrase ‘good hospital practice’ encompasses a broad range of hospital activities, but this
presentation will be selective in addressing specific issues of hospital operations that are involved in
sterility attainment, measurement, and retention. Examples in the areas of hospital processing
procedures, infection control situations, aseptic medical practices, sterility testing, and parenteral
solution manufacture will be specifically discussed. I will point out scientific issues that are
controversial and questionable, invite the audience into a dialogue with regard to methods,
procedures, and standards that should be developed to resolve these issues and develop acceptable
worldwide standards for hospital operations. Through co-operative dialogue and agreement of
medical professionals, the problems of infection control and medical practice will lead to better
controls of hospital operations and reduced potentials of treatment-induced and nosocomially-
acquired infections.

The title of this presentation has an awesome note, because it suggests that the author will take it
upon himself to be judge and juror for hospital practice procedures that are in use worldwide. To
dispel this notion early, the subject matter will encompass some common controversial issues that
hospitals face in various countries of the world. Due to the knowledge and personal experience of the
writer, there will obviously be some bias, but I trust that it is based upon scientific and technical
judgment rather than the narrow-mindedness based upon unproven academic or technical trivia.
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Good Manufacturing Procedures Issues
As the title suggests, the phrase ‘Good Hospital Practices’ encompasses a broad range of hospital
activities from administrative procedures to clinical practices. Organizational charts, building
designs and maintenance, and other aspects of hospital operations will not be discussed since they are
not directly involved in the issues of clinical practice or to procedures to reduce or control
nosocomial and other types of infections. Hospitals of all countries should develop their own locally
necessitated operational procedures that best suit their administrative control and these procedures
should preferably be documented in written form that is available to hospital personnel involved in
specific activities. The document should set the stage and the basic rules of what is expected as a
standard within the hospital and also the satisfactory expectations of routine operational activities
within the hospital or specific departments. In the US, each hospital sets up its own operational
control manual based upon guideline recommendations by a number of publications that include the
Accreditation Manual for Hospitals, published by the Joint Commission on Accreditation of
Hospitals (1), the numerous guidelines published by the Communicable Disease Centers (2-6), and
the American Association for the Advancement of Medical Instrumentation (AAMI) documents
entitled Good Hospital Practice: Steam Sterilization and Sterility Assurance (7) and others (8-10). In
other countries, somewhat similar documentational approaches are performed and many are patterned
similarly to those published in the US. Most operational control manuals are highly idealized
approaches to the specific issues of infection control and hospital operations. More importantly, these
guideline manuals serve as the basis of hospital internal standards by which administrative judgments
can be made on departments and individuals. Whenever governmental or pseudo-governmental
guidelines are published, enforcement and control of these proposed regulations are problematic
because of internal hospital administrative practices, governmental restraints, and legal aspects.
However, it is good business sense to set up a form of Good Hospital Practices Guidelines to set
minimal or basic standards for hospital operations. In the US, private, city, state, and federal
hospitals act independently without heavy government controls, but minimal general standards must
be maintained to protect the patients. However, in other countries where hospitals are federally
controlled and supported, patient care standards are governed by bureaucratic agencies rather than
local hospital-developed guidelines, and all too often these bureaucratic regulations or guidelines are
impractical or redundant for a particular hospital’s operation. Another issue of difference in world
hospital operations is whether or not health care is nationalized. Under those conditions, bureaucratic
regimentation prevails over flexible local needs and, hence, brings up questions of effectiveness and
accomplishment. In the US, where medicine is not nationalized, the patient has several recourses in
the event of suspect medical services, including the ever ominous presentation of a malpractice suit.
All hospitals do require some types of standards and guidelines under which they operate, to protect
the patients and continually improve patient care.
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Infection Control Issues
One of the most overworked and abused medical phrases, ‘Infection Control’, is the catchcry of most
hospital operations relating to patient care. All medical and administrative issues generally are
focused on techniques, procedures, general operating procedures, and treatments to control infections
in hospitalized patients. Both medical and surgical patients have equivalent propensity to exacerbate
the conditions of the illness under which they came to the hospital, and have also the potential to
acquire additional health problems as a result of their hospital stay. All hospitals of the world are
similar in that it is necessary to have good hospital practices to control naturally and hospital-
acquired infections in the health treatment centres. Clinically recognized infections of incoming
patients can be easily managed and controlled by applying precautions and treatments generally
recognized internationally and standardized. However, two spectres hover over hospitals and have no
geographic bounds: indigenous or endemic infections that are becoming epidemic through the jet age
and the ever-present nosocomial infections with their changing panorama of causative or implicative
infective agents. A rather naive solution to control these infections is to have all patients under strict
isolation with tight infection-control practices, namely to treat by decontamination procedures or
sterilization all recognized and unrecognized items having patient contact as being potentially
infectious. Such a practice would not only be futile but also highly costly. Since this conference
focuses on sterilization procedures, it is obviously advantageous to use sterilization processes to
reduce or break the chains of spread of hospital infections. Using a sterilization process is a
guarantee of the destruction of known and unknown infectious agents on articles having patient contact
and is the prime method of finite decontamination. Unfortunately, not all objects are stable to standard
hospital sterilization processes and alternatives of decontamination, such as disinfection, are
employed that do not produce absolute microbial destruction. The decision of whether to use
sterilization or disinfection for rendering articles safe to handle by reprocessing personnel, or safe
for subsequent contact with patients, is a foreboding one that all hospitals in the world must make at
one time or another. The absolute and not debatable approach is sterilization, because the processes
are well developed and easily controlled and monitored. Disinfection, on the other hand, with well-
proven chemical or physical processes, can fail in the destruction of all microbial forms, and routine
monitoring of the process is not feasible or practical at present within the time limits of hospital
operations. The efficacy of any chemical and physical disinfection process is not only dependent upon
the disinfectant and its ultimate total contact with the object, but also upon the degree of cleanliness of
the article before the disinfection process is applied. Soil residues left on the article will severely
inhibit or prevent attainment of microbial disinfection satisfactorily to provide adequate patient
safety. Some articles requiring disinfection as the only microbial control measure may not be
amenable to total disinfectant exposure by immersion or contact due to component incompatibilities.
It is therefore very questionable whether disinfection can be adopted in world hospitals as a safe
method for decontamination and reuse of articles subjected to the process. A good example of
worldwide dilemma of the disinfection/sterilization issue is the reuse of all types of endoscopes.
Numerous recognized health agencies worldwide have taken different positions on this particular
issue but there are very few authorities, health care and other, who will totally support the absolute
standard that all endoscopes must be delivered and employed sterile for any patient procedure.
Arguments are continually made by physicians, hospital administrators, nurses, and paramedics thatSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



sterilization cannot be employed, except for the first patient of the day, because the endoscope
turnover time is short, or that the costs of additional endoscopes are too high to have a satisfactory
inventory of them for each day’s operations. This argument has always been weak even though
publications supporting sterilization have appeared (11). Recent articles by Hawkey et al. (12) of the
UK and M.T. Sammartino et al. (13) describing specific patient cross-infection by endoscopes with
Salmonella and Pseudomonas spp. are documented evidence to justify the need for sterilization of
endoscopes. Data and publications from the US and other countries may not have appeared because of
the high potential of litigation by patient malpractice suits. Nationalized health care countries may
provide additional documented clinical evidence to support the position that sterility is a requirement
for all endoscopic instruments.
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Aseptic Medical Practices
In concert with any hospital infection control programme and controlled hospital sterilization
procedures, reinforced programmes should be instituted to have total agreement and acceptance on
aseptic practices of many hospital operations and procedures. Breaches of aseptic practice occur
daily in all world hospitals to the jeopardy of the hospitalized patients. All too often the principles of
aseptic practice are given in theoretical terms during the early training and education of key hospital
professionals, i.e. physicians, surgeons, paramedics, nurses, and clinical technicians, but by the time
they have reached clinical practice or graduation, these concepts are totally forgotten or abandoned.
Take for example the routine practice of drawing blood samples. In hospitals, sterile lancets and
pipettes are provided in commercial and hospital packaging. Sterility of these articles becomes
academic, as the hospital professional rips the articles from their packaging with unwashed hands.
The skin site is rinsed with an alcohol or iodophor swab or pledget in a time inadequate even to
disturb the skin microbial colonies. This is then followed by lancet puncturing, that may have been
mishandled and contaminated by the hands. Blood is sampled by the pipette smeared by skin bacteria
and finally followed by the magic alcohol or iodophor pledget. The picture is quite clear that in
simple procedures such as these, all the elements of aseptic procedures have been provided with
sterile supplies, but sterile practice is left behind. Many will argue that the safety issue of a blood-
letting procedure is inconsequential, but no one takes time to think about the fact that the same
procedure is used on critically ill patients, such as in renal transplantation, cardiac problems, and
patients treated with immunosuppressive drugs, where there is a high risk of contamination.

Another area of worldwide breaching of aseptic practice is in the use of isolation techniques for
patients of different types of medical problems. The principle of isolation is an extremely good and
technically accepted one, and was derived from health care practice even before the microbes were
recognized as the causative agents of some diseases. Today there are many sophisticated isolation
procedures ranging from total room control to bed plastic isolates. Procedures for patient contact
within the isolation systems vary but, generally, the litany consists of donning sterile cover gowns,
sterile gloves, and sterile masks. However, all these actions are exercises in futility, because the
medical professional does not treat these basic items as sterile, nor makes any attempt to preserve
their sterile integrity before any patient contact is made. Last but not least, many professionals forget
one of the first basic principles of aseptic practice, that is hand washing before and after all patient
contacts. The irony of this example is that the hospital central service department, or the commercial
medical device manufacturer, have gone through a systematic process of packaging and sterilization to
assure delivery of each item in the sterile state up to the time of use.

Another common breach of aseptic practice which occurs routinely in all medical hospital
operating rooms is the handling of sterile surgical instruments during any operative procedure. The
instrument processing or central service department are diligent and scrupulously careful to assure
that all surgical instrument packs contain the correct number of scrupulously clean instruments,
packaged in accordance with internationally accepted standards, sterilized by well-controlled
sterilizers of steam or ethylene oxide gas, and delivered to the operating room in the accepted double
wrap to allow for retention of instrument sterility until the time of need and use in the operating room
or emergency room. All this is in vain because the instrument packs are opened far in excess of their
time of need and are open to the environment in an organized display during the entire operativeSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



procedure that may be 30 minutes to hours. No operating room, no matter how well environmentally
controlled, is sterile, and the articles within the room and, most importantly, all the operating room
personnel are shedding microbes that can, and do, deposit on the surgical instruments by the normal
eddying currents of the environmental air. How many nosocomial infections of surgical patients occur
because of this breach of aseptic practice is unknown because the finger can be pointed toward many
other breaches in health care that can occur during a patient’s hospital stay.

There is also ‘overkill’ of good hospital practices worldwide without full comprehension of the
scientific or technical basis for incorporating these practices into routine hospital operations. The
continued use of ultraviolet light in specific departments of the hospital, such as central service and
the operating room, is still believed to be an important infection control device. Although the
scientific literature has shown years ago that ultraviolet on ceilings etc. has little effectiveness except
for a few centimetres away from the light source, ultraviolet lights are still seen in many hospitals of
the world. Even as psychological crutches of passive infection control, ultraviolet light can be
forgiven, but these lights may, and do, cause serious cumulative retinal damage to patient and hospital
personnel who have continuous contact in these ultraviolet light rooms. Eye safety is far more
important than the miniscule reduction of airborne microbes.

Laminar-flow hoods are another example of products that have been professionally touted to be an
effective part of some infection-control programmes and have been incorporated into operating
rooms, intensive care wards, isolation areas and rooms, and clinical and pharmaceutical laboratories.
Generally, the worldwide hospital use of laminar-flow hoods, whether they be horizontally,
vertically, or diagonally sterile, delivering laminar-flow air is fraught with more technique breaches
than their value in any hospital applications. Sterile laminar-flow air can be used in its proper
environment and for specialized applications, but it is not recommended for the many hospital
applications in which it is currently employed, because the integrity of the laminar-flow sterile air is
never maintained intact whenever any movements take place within the path by patients or hospital
personnel. There is also no documentation to support the premise that the infection rate of patients
under sterile laminar-flow air is smaller than under standard hospital procedures of good patient
care. The strongest argument, in the past, for sterile laminar-flow air came from orthopaedic surgeons
performing hip or joint prosthesis surgery. However, today, the data collected on infection rates of
total hip replacements support the premise that surgical procedures are better and shorter and the
contribution of sterile laminar-flow air is nominal or nonexistent.

Another area of hospital operations where there is questionable value of its continued practice are
the hospital laboratory analyses of attainment of sterility using product sterility test as the index of
sterility measurement. Many hospitals worldwide still live under the fallacy that sporadic or routine
performance of product sterility tests is an integral portion of their infection-control programme.
Simple to elaborate benches and rooms have been set up to perform these tests. These may include
laminar-flow benches. The sterility test laboratory is one of the few places where laminar-flow
hoods or benches can be fully justified technically. Hospitals generally do not have personnel
knowledgeable and/or adequately trained to perform product sterility tests even if the sterility test
could have any technical significance. The debate between the value of product sterility tests and
validated sterilization processes with biological indicators for sterility measurement is basically
worldwide and, in general, acceptance of the validated sterilization process technique is prevalent.
For aseptically manufactured items, the product sterility test may still be required but it is a weakSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



measurement of sterility attainment. Routine product sterility test in hospitals is unnecessary and
should not be performed except in very special circumstances.

Manufacture of sterile parenteral solutions is carried out in all world hospitals except the US. The
procedures for manufacturing these solutions within the hospitals, from simple saline solutions to
complex mixtures of nutritive solutions, are highly variable. Control of these products within the
hospitals is by personnel in departments of diverse scientific and technical training such as
pharmacists, central service technicians, and clinical laboratory professionals. There are invariably
many instances of breaches of scientific and medical principles occurring in this area. Hospital
manufacturing processes of parenterals should be rigidly controlled by precise written procedures
and under the control and supervision of knowledgeable trained professionals who appreciate the
safety and efficacy of the sterile solution products and do not compromise scientific principles in
times of manufacturing urgency. Two areas of problems in solution manufacture that deserve special
mention are the validation and monitoring of the sterilization process for the liquid-filled containers
and the tests for pyrogens (14, 15). Special procedures and products have been developed to enable
the hospitals to carry out routinely these quality control functions with a minimum of error.
Sterilization validation systems for solutions have been published by many agencies and reference is
made to those publications on the subject. Similarly, the Limulus Amebocyte Lysate (LAL) test for
pyrogen reduces or eliminates the need for the rabbit pyrogen test. The LAL test is simpler, more
rapid, accurate, and more precise than any rabbit test. Corrections of other breaches of solution
manufacture are easily made following the techniques and procedures developed and published
worldwide.

Last but not least of worldwide hospital practices that are controversial, is the continuous
professional debate over reprocessable hospital supplies and disposable or one-time-use items. This
issue will continue on for many decades because the justification of one position over the other
encompasses not only professional and ethical implications but also economic considerations. In the
US, the use of disposable products far outweighs the reuse of reprocessable hospital supplies. The
cost justification for the shift has been touted and published by medical device manufacturers and has
lead to the high acceptance of sterile disposable items. However, the continued price increases of
one-time-use items has far escalated the previous hospital cost justification. Questions are being
made on the value and cost economics of these items by the now cost-conscious US hospitals as well
as the administration of the United States Veterans Administration Hospitals group. Although all the
answers are not in, it is fair to say that the cost factor of health or hospital care is forcing the
pendulum the other way and many items deemed ‘necessary and safer’ as one-time-use items will
again be cost-justified by hospital reprocessing. Examples of products which should never be
reprocessed are IV needles, sutures, and many types of cardiac catheters and diagnostic devices. The
risk/benefit involved cannot be justified. Other products of less cost will return to standard hospital
cleaning, reprocessing, sterilization and packaging operations for recycling, either to reduce or to
minimize rising hospital costs.

In summary, this paper has pointed out several controversial issues that all hospitals are facing
today. Many of the technical issues and problems do have resolutions and compromise, but it is the
questioning and debating that all of us play in our professional roles that will continue to raise the
standards of world hospital patient care and lower infection.
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The Expectations and Demands on the Hospital
System for Sterile Products
Bernard J. Amos

The Parramatta Hospitals,
Westmead Centre
Westmead, New South Wales, Australia

Twenty five years ago, I can remember, as a student, being introduced to the mysteries of sterile
technique and surgical sterility. Sterility was explained to us as an absolute situation rather akin to
pregnancy! Indeed, I am still convinced that many of my surgical colleagues and scrub nurses retain
similar views today.

Over the years in between, I became aware of great changes in the management of patients in our
modern hospitals. Sterilization has graduated from being a side-room activity to become a new area
of specialization in itself.

Hospitals today are confronted by a bewildering array of sterile products, both disposable and
reusable. Demands for improved products and techniques are insatiable and expectations of quality,
performance, and availability are infinite.

To understand the present situation, it is helpful to review the history of modern hospital practices
and the way in which sterilizing services have had to respond to the demands of the users. These
demands have been governed by the development of technology and the economic constraints
affecting modern hospitals.

To review this situation, I would like to illustrate some of the present problems in a large
Australian hospital and give some idea of the workload that produces the demand, and how the
sterilizing services are organized to respond.

It is difficult to accept that modern concepts of surgical technique and sterility in hospital practice
are relatively recent historical developments; in fact, little more than one hundred years old. To those
of you from microbiological backgrounds, the surgeons’ concepts of absolute sterility and the sterile
surgical field must appear a little dubious. However, the strange rituals of the operating room,
although perhaps lacking in scientific basis, have an enviable track record in the growth of safe
modern surgery.

Developments during this century have been progressive, but the pace of progress has accelerated
over the last thirty-five to forty years. These latest advances owed their beginnings to the Second
World War, and speeded up with the widespread use of antibiotics and other modern technology.
Hand in hand with the surgical advances have come better anaesthesia, better understanding of
physiology, and the easy means of measuring physiological data in clinical situations.

Sterilization has kept pace with the times. Great strides have been made over the last thirty years,
when hospitals began to make their first steps into central sterilizing to improve standards and qualitySingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



control. The range of goods processed at first was not vast, then again neither was the demand. Most
departments dealt with surgical instruments, gowns, gloves, sterile dressings, linen, and
miscellaneous sterile hardware. Needles were sharpened, gloves processed, and intravenous giving
sets were Heath Robinson contrivances of glass, joined by rubber tubes with screw clamps to control
flow rates. All these products were sterilized in simple autoclaves.

In the early days of central sterilizing, there were clearly double standards. In the wards of the
typical hospital, there was a much more permissive set of rules. Here, syringes and needles used for
intramuscular injections were simply boiled in water, and dressings for ward use were bulk-
sterilized and placed on a rather majestic vehicle called the dressing trolley. This conveyance moved
from bed to bed and these bulk dressings were applied using the boiled instruments when dressings
were changed or sutures removed. These practices seemed satisfactory, even advanced, for times
when older physicians and nurses could easily remember spirit containers for syringes, and spirit
lamps and teaspoons to make up injections from tablets.

The beginning of the technological explosion cannot be pinpointed exactly, but there were a
number of significant advances at about the same time that played a major role. The availability of
intermittent positive-pressure ventilators, automated biochemical analysers, and physiological
monitors placed powerful weapons in the right hands at the right time. Added to this, pharmacology
had provided a whole new range of powerful drugs, active on the vasculature and central nervous
systems. Surgery, making use of these new tools, obliged by attacking the vascular system, the heart,
the great vessels, and the brain. By using metallurgical advances, fractures and joint disease were
treated with better means of internal fixation and joint prostheses. Extra-corporeal circulations were
developed to allow more time to repair cardiac defects, and immunology provided the ability to
suppress the immune mechanisms to permit organ transplantation.

The whole process has been relentless and the performance, as measured by mortality, morbidity,
and improved quality of life, has been one of steady improvement. Cardiac surgery which carried
mortality rates of 20% in early days is now being performed with rates of 1% or less.

The improvement in performance is a result of experience, better techniques, better technology,
and better equipment in the right hands. Many of the problems of the early days have been solved.
Many of the solutions have been the result of sheer hard work and many have resulted from the ability
to innovate. As succeeding generations of students will testify, the explosion of knowledge has
provided a lot more to be learnt in the same amount of time.

Along the way, the science of medicine has benefited from advances in technology in plastics,
metallurgy, and above all, in electronics. Some of these developments brought their own problems
with them. Foremost in these were the problems of how some devices could or should be sterilized,
and many previously well-accepted procedures and products had their shortcomings highlighted.

To illustrate the point, intravenous fluid had changed from being locally prepared in bulk to being
commercially prepared in litre flasks. After particulate matter had been demonstrated in fluids,
plastic packs which were easier to store and use began to appear. The same problems are now being
reported from this presentation. Similarly, giving sets had developed from the glass and rubber
contraptions to disposable plastic sets with silicone-coated filters. Various measuring devices had
also become available to regulate drug dosage and drip rates. The height of these developments is
seen in the drip pumps and Injectomat* types of apparatus. These changes had taken intravenous
therapy from a stage at which pyrogenic reactions were commonplace to a situation of greater safety,Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



in which graduated quantities of fluid with measured doses of additives could be accurately
administered. Today’s quality control and product assurance programmes tend to be taken for granted
until tragic events re-emphasize the need for their constant reinforcement.

The Central Sterilizing Department which had been dealing with a limited range of products was
soon presented with a greater variety of strange materials and instruments in need of processing.
Plastics and other synthetic goods lead to the use of ethylene oxide sterilizers. Ultrasonic cleaners
were developed to deal with those instruments and devices that could not be cleaned satisfactorily
manually. The success of this sort of machine made hospitals recognize, in retrospect, that they had
cleaner surgical instruments than they had ever had, rather than ‘sterile’ instruments that contained
‘sterile’ organic matter on their inaccessible parts.

The expansion of the horizons of surgery brought other problems, as the scourge of antibiotic
resistance of the late 50s. This was the late legacy of the introduction and widespread use of the
wonder drugs of the same decade. The problems showed up as wound infections, respiratory
infections, and septicaemia, and their appearance caused widespread revision of the procedures to
control infection and cross-infection in hospitals. Valuable lessons were learnt which combined the
best of the old and new methods. Generally, these solutions proposed better techniques and
procedures. Better quality products became mandatory as normal everyday requirements. Old
routines disappeared. Single-use syringes and needles appeared, catheters, dressings, and
endotracheal tubes were individually packed and sterilized. Local sterilizing was done away with
completely.

Nevertheless, these extensive procedures had considerable associated morbidity and were not
achieved without clinical risk. Heroic surgery required prolonged intravenous fluid therapy, drainage
tubes in body cavities, indwelling bladder catheters, and often tracheostomy and intermittent positive-
pressure ventilation. Monitoring of the patient’s condition required arterial and venous pressure
monitoring and needle electrodes under the skin. All these techniques, apart from their inherent
complexity, breached the body’s first line of defence against infection.

Intensive and Coronary Care Units had become necessary to deal with all the elements of the
complex treatment and their complications.

However, another interesting observation had been made about costs on the way. Not only had this
new technology permitted more complex procedures to be undertaken, but the ordinary processes of
metabolic recovery after less arduous procedures could also be accelerated. Lengths of hospital stay
could be significantly shortened and some clinical complications thereby avoided. Economically,
these were discoveries of profound significance. More patients could be treated in the same number
of beds. However, it was also apparent that this increased level of activity made increased demands
on staff. Staff levels began to rise both at direct care levels and in the staff necessary to maintain the
logistic support.

Instead of the previously recognized 10-12-day stay of the general teaching hospital, stays have
tended to fall to 5-6 days. Wards contain much sicker patients and the workload does not allow much
relief for tired staff.

Hospital workloads have increased in terms of the total numbers of patients treated. Demands for
services have risen as the users have come to realize that medicine has something to offer. Many other
factors have contributed to the rise in demand like the ageing of the population generally and the
increased incidence of road traffic accidents.Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



Despite the technological miracles of the age, governments all over the world have shown
increasing concern as the overall costs of health care have continued to rise. Clear messages have
been delivered in this country that the hospital system has to tighten its belt and consume less
resources. Emphasis has been correctly placed on efficiency, the elimination of waste, and the
improvement of budgeting. Blame for the increased costs has been laid at the door of rapacious
doctors, profligate administrators, unnecessary operations, and the unjustified use of technology
without due regard to cost. Whilst all of these charges have been supported by examples, two facts
are quite clear: first that staff costs have risen enormously due to increases in numbers and in
individual earnings, and secondly, that numbers of patients treated have increased disproportionately
to the growth in hospital bed numbers.

Whilst great economies can be achieved by the elimination of unnecessary and wasteful practices,
major savings cannot be achieved without some reduction in the levels of services provided, either
by limiting numbers or allowing lengths of stay to blow out. The result of the economies, however
effected, will be waiting lists for hospital admission, reduced levels of service, and dissatisfied staff
and customers.

These historical and economic digressions have been necessary in order to set the scene of the
present hospital situation. Let me take you through one modern teaching hospital and try to give you
some idea of the services provided and the workloads generated.

The Westmead Centre of The Parramatta Hospitals is the first teaching hospital completed in NSW
this century built with a purpose. It was built to supply referral and general hospital services to the
large population of about 1.2 million people living in Sydney’s Western Metropolitan Health Region.
This area has undergone dramatic growth and development over the last 25 years. The provision of
the Westmead Centre sought a reduction in long travel distances for the local population to the
traditional inner city referral hospitals for some of the basic and all of the more esoteric forms of
hospital treatment and diagnosis.

The area served by the hospital is vast – about 5300 km2. Transport is poor and the population is
relatively young by Australian standards – mostly young families from middle and working class
backgrounds, attracted by the cheap land and houses available in the area. Many of the residents
commute daily to the city although there is considerable employment in light and medium industry and
clerical work in the area. The Region shows a strong community identity and spirit, although natural,
community, and social amenities are relatively deficient. In the early 1970s, it was recognized as a
‘Health Services Scarcity Area’ – undersupplied with hospital beds, doctors, and paramedical staff.
Leakage from the area to inner city hospitals was high and the local hospitals were among the most
heavily utilized in the nation.

As an attempt to redress some of this health service imbalance, it was proposed to build this new
teaching hospital of 925 beds and, through Federal and State Government co-operation, the project
was begun in 1975 and completed in 1980 at a cost of $A181 million. The politics of both Federal
and State Governments changed during the course of construction, yet the project continued without
interruption, such was the level of commitment to the project.

The first patients were admitted to the hospital in November 1978, three and a half years after
building work had begun. In the four years since opening, the Centre has expanded rapidly and the
services provided have been enthusiastically received by the population.
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Annual growth of services
Available beds Inpatients Outpatients

1978-79 360 4 516 33 136
1979-80 710 25 349 190 958
1980-81 800 37 044 322 207
1981-82 844 38 641 437 768

The services supplied in 1981-82 included:
Output Input

Inpatients treated: 38 641 Staff employed: 3 500
Babies born: 3 510 Salaries and wages: $54 508 000
Outpatients: 437 768 Goods and services: $19 154 000
Operations: 15 000 Other costs: $ 4 046 000
Accident & Emergency attendances: 75 000 Measured as cost/bed/day: $261

Income – all sources: $16 058 000
Government subsidy: $61 750 000

Against this strictly statistical background, you must also try to gain an impression of the practical
operation of the hospital. Every day, there are approximately 120 new admissions comprising:

10 Obstetric
55 Emergencies
55 Booked and referred admissions

Procedurally there are daily:
10-15 Confinements

80 Operations (major)
1500 Outpatient visits

220 Casualty attendances
430 Dental attendances
350 Litres of intravenous fluid used

3000 Injections
120 Anaesthetics

These daily workload figures will give you more of an idea of the demands existing for sterile
products. The expectation is that every case in need will have all foreseeable requirements instantly
available, with reserve stock available to allow multiple cases to be carried out successively.

The only work that can be booked involves those patients who belong to the booked and referred
admission group. These include certain obligatory admissions such as haemodialysis patients,
patients for cardiac catheterization, and for semi-urgent surgery for cancer. It is obvious that this
group does not include many patients in the discretionary surgery group.

In the event of excess demand, they are the same booked and referred (so-called nonurgent or
elective) admissions who suffer first, so that more acute admissions can be taken. There is a certain
urgency about obstetric admissions which will not be denied.

To operate effectively, the hospital has been built with three major sterilizing units, eachSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



concerned with the receipt, sterilization and delivery of sterile products for specified areas.
The principal unit (called Central Sterile Supply Unit) is situated between 16 general operating

rooms and 11 obstetric delivery rooms, and serves both these areas as a major responsibility. It
supplies goods to all wards, outpatient areas, the accident and emergency department, and to all the
diagnostic and treatment areas.

The second unit (called Dental Sterile Supply Unit) is located in the Dental Clinical School and
provides services to the 150 dental chairs and four operating rooms, as well as to the ancillary
services such as X-ray and anaesthetics in the dental school.

The third unit (called Regional Sterile Supply Unit) is a free-standing unit used to perform
production line sterilizing of single-use dressing packs and sterile linen for operating room use.
Although designed with a capacity to handle the load for the entire Region, the full capacity has not
yet been utilized and the unit is supplying only three hospitals.

In addition to these major units, significant sterilization or preparation of sterile products takes
place in the Pharmacy for the production of Total Parenteral Nutrition fluids and intravenous fluid
additives; in Radiopharmacy for the production of radionuclides for parenteral diagnostic use; and in
Microbiology for preparation and end-sterilization of culture media.

Wherever economically feasible, disposable sterile products are used. An expert committee
examines the need for, and cost of, all single-use materials before they are added to the approved
stock list available within the hospital. There are at present 620 disposable sterile products approved
for use in the hospital.

Use of sterile products creates demand, not only for the products themselves but also for the
delivery systems, stock ordering and rotation systems, quality control, return of used goods, and
reprocessing. In these enlightened days of disposable goods, it is almost necessary to have a training
course for nurses to be able to recognize the disposable from the reusable.

All of these sterilizing units have been established as important service departments employing
production-line methods and modern equipment to disinfect, clean, pack, sterilize, and supply all the
demands and needs of this heavy workload.

The users have simple expectations – essentially that everything they want will be available as
soon as it is needed. Quality control is expected to be 100%. Cost containment is not regarded as a
valid excuse for failure to live up to any of these requirements.
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DISCUSSION
SESSION II

Q. by N. Hilmy – Indonesia
Dr Pritchard, my question is on the possibility of resterilization of disposable medical devices.

We have problems in my country because we import a lot of disposable medical devices from several
countries. We have two reasons why we would like to resterilize the devices. First, because of the
value of the devices, and secondly, because they were bought and not used in time. We were
approached to sterilize the devices by gamma irradiation. Of course this was rejected as we did not
know what would be the effect of gamma irradiation on the devices. Subsequently, we were advised
that the devices had been sterilized by another technique and that there were no complaints from the
patients. We then carried out several studies in mice in our laboratory using the resterilized medical
devices. There have been no problems encountered in the resterilization of devices. Would you
comment on this.
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A. by R.C. Pritchard – Australia
I think, the basic principles in terms of resterilization of disposables are first the need to be able

to clean the device. This excludes cardiac catheters and so on, because we do not know how.
Secondly, whatever sterilization process you use should not degrade the materials; and thirdly, at the
end of the process there must be some way of ensuring that the device still serves its original function.
If you can satisfy these three principles, then resterilization is possible. The fact that one can get away
with it once, or even one hundred times, is no evidence. One needs to look at resterilization as
virtually an initial manufacturing process.
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Comment by F.E. Halleck – USA
I would like to comment on this also, as this very question comes up constantly in the US and other

places in the world. I agree with Dr Pritchard here in what he said. The key element of any
reprocessable item in a hospital is how well you can clean it. I did not discuss this in my my talk, but
I should have; I had that in mind but time did not allow. We do not have cleaning standards that we
can apply to medical instruments, or medical devices, or to whatever in the hospital or in any place
for that matter. How do we define clean? We can define sterility by a mathematical term or some
other definition but we cannot define clean. Clean is relative and an important worldwide issue that
should be discussed and standardized in the future.
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Comment by J. Timmins – Australia
I would like to point out to Dr Pritchard that the report on the Working Party on Hospital

Manufacturing referred to by him was, in fact, an interim report to the Health Commission of New
South Wales, and that the final report has, in fact, changed a number of the statements that Dr Pritchard
quoted. No doubt, the Working Party would have appreciated Dr Pritchard’s comments on the initial
report.

I would like to comment further on the criticisms of the 24-hour limit on TPN solutions. Earlier,
they were regarded as bulk manufacture, which was taken from the definition of bulk manufacture
used for the purposes of that report. I believe that we have to look at the aseptic preparation of IV
solutions in hospitals as involving a certain risk of contamination, and by keeping the solution for 12,
24, 48, or 72 hours we are increasing the risk of heavier contamination that may well become
significant. As such, one factor often forgotten is the check on refrigerated storage of these solutions,
perhaps after they have left the manufacturing area. I am just referring to the 72 hours, as this time
period can well be met by having solutions prepared on a Friday afternoon for administration on, say,
a Sunday night, that may well still be being infused on Monday afternoon. So, that is three days, or 72
hours later, which is a significant time interval.

_______________
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Q. from the floor
Dr Amos, in the very busy areas of washrooms and equipment sterilization in your hospital, what

sort of controls and how much control is practical, and who oversees these areas?
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A. by B.J. Amos – Australia
This is the very point that some of the other speakers have been talking about. There are no

standards for sterilizing departments. There are standards in the US. The local council on hospital
standards really dismisses sterilizing departments fairly briefly in amongst the environmental
standards. However, I feel sure that this will be expanded. I believe that the answer is in proper
management, training, and supervision of staff in the area. To a certain extent, there is no definition of
clean, as Frank Halleck said. You have all sorts of equipment, automated dishwashing equipment,
ultrasonic cleaners, hand washing, electronic dishwashers to clean tubing, and so forth. There must be
a proper management structure in the area with supervision, leading hands to watch that the proper
techniques are being observed and proper procedures are being followed, and that there are no
breaches of those procedures. The keystone of all of that, I think, is in management, inspection, and
supervision.

_______________
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Q. by E.R.J. Pavillard – Australia
I am interested in Dr Pritchard’s comment that some of the legislation in New South Wales to

improve standards has resulted from crisis management. We would like to think that good
administration and good education would result in management without crisis. In fact, some states at
the moment do not have these provisions, and we may assume that they are either doing very well, or
that management is very imperceptive. We would like also to have standards in the neighbouring
states to New South Wales for their hospitals. Could you make a comment.
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A. by R.C. Pritchard – Australia
The situation was one where an immediate action was called for by the Health Commission of

New South Wales, and obviously it had to be a reaction that got the situation under control
immediately. At this stage, the situation is being reviewed and there are signs that we are rolling back
from extremely stringent standards. I would agree that it would be nicer to devise standards in a calm
and controlled atmosphere, but in practice this is not what really happens.

_______________
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Q. by R. Edwards – Australia
I would like to ask the panellists comments or definition of the terms ‘disposable’ and ‘single

use’, as my company is a ‘single use’ manufacturer and on our labelling we refer to ‘single use’ as a
guarantee that the products are sterile, nontoxic, and nonpyrogenic at the time of opening the packet.
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A. by F.E. Halleck – USA
My definition is very simple. According to the manufacturers, once a device is opened and used

on a patient, it cannot be reused after any reprocessing. I assume that most of the manufacturers in the
world imply this with labelling of one-time-use sterile items. However, the biggest problem in
hospitals is that many one-time-use items are opened, the sterility barrier breached and they are never
used. This is an issue where waste is in hospitals and where we have to have some control on the
reduction of cost. For example, you open up a cardiac catheter with a rather sizeable cost on it; just
because you open the wrong size and throw it away, you cannot very well justify it. Most
manufacturers do not want to take the responsibility of saying, you can resterilize, because they are
concerned about the liability. It is what I call a vicious circle between the manufacturer who is trying
to protect the liability issue, and the hospital that is trying to reduce the cost factor on these unused
items. We were talking this morning about reprocessing items in hospital. There are those that are
traditional, for example surgical instruments. You are not going to throw those away. There are a
number of things that can reduce the cost in one-time-use items that are very costly. I do not see why
we cannot resterilize. All it requires is repackaging and this is the problem. The manufacturer is not
going to address that subject.
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A. by R.C. Pritchard – Australia
I have nothing to add to that. I would define a single-use item as anything, the manufacturer said

was ‘single use’, although one need not necessarily follow that provision all the time.
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A. by B.J. Amos – Australia
I would agree with the other two speakers. Certainly, I believe that if the manufacturers specify

‘Single-use’, ‘Destroy’ or ‘Throw away after the label is breached’ then it is the responsibility of the
user to follow those instructions. I think, if any user takes it upon himself to reprocess according to
Robert Pritchard’s guidelines for the reprocessing of goods, then the onus cannot be on the
manufacturer any longer. It must be on the processor. All hospitals at the moment are beset by
economic difficulties, and I believe, we are about to throw the idea out. It is just too complicated and
too difficult to manage.
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Comment by S. Riley – Australia
I would like to comment that a couple of speakers have said that there are no cleaning standards or

any standards set in hospitals. In most states in Australia, the Sterilizing Councils and the training and
education programmes that are run do set standards. I find that there are problems with hospital
administrations and some health authorities accepting these standards, because they come from a
Sterilizing Department.

_______________
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Q. by L.F. Dodson – Australia
Dr Pritchard said that there was an adverse reaction to the labelling of bandages or dressings for

‘Hospital Use Only – Sterilize Before Use’. Could you tell me what the objections were.
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A. by R.C. Pritchard – Australia
The particular problem that happened at our hospital was that cartons of unsterile cotton wool

swabs were received labelled ‘Non sterile – must be sterilized before medical use’. This
immediately threw our Stores Department into a panic. The uses of cotton wool swabs around the
hospital are many and varied. Some of them are definitely nonsterile uses, and some of them come up
to microbiology to be packed in test tubes and we sterilize them. It was the all-embracing nature of
the directive of the labelling that caused the problem. The manufacturer had put this on without
informing the Stores Department. I think, had there been some communication beforehand, the
problem would not have arisen, but it caused quite a deal of flurry before the matter was resolved. I
believe this also happened with another manufacturer in another hospital.

_______________
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Comment by J.K Clarebrough – Australia
It usually behoves the chairman at the conclusion of such a session to make one or two comments

and perhaps highlight what may have happened during his session. May I just briefly make the
following remarks.

Dr Pritchard highlighted for us the problem of the production of the bulk sterile products within
hospitals, the problem that it has led to, and the reaction of the New South Wales Health Commission,
that is a reaction that must be looked at nationally as well. He pointed to the lack of proper guidelines
for the control and supervision of Central Supply Departments and made a plea for increased training
programmes for the people who used those departments. He finally made a plea for better
communication between the hospital and the Commission.

Dr Halleck pointed out to us that there are controls for which operation manuals exist. But he did
caution us on overcontrol and bureaucratic overinvolvement. He pointed also to the futility and
possibly cost ineffectiveness in carrying guidelines to their ultimate. He emphasized the training in,
and the observance of, aseptic medical practices, and isolation techniques, and critically analysed to
their disadvantage ultraviolet light and laminar flow systems.

Finally, Bernard Amos took us on a very delightful tour of the Westmead Hospital. He again
emphasized the complexity of a modern hospital, the importance of cost, the difficulty of maintaining
standards in our current cost-restrictive situation, and again he pointed out the importance of the
patient, the infringement and invasion of patient integrity, and the vast area of products that we are
expected to supply.
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Sterility Assurance
vs. Safety Assurance
Eugene R.L. Gaughran

Ethicon, Inc.
Somerville, New Jersey, USA

To judge the safety of a sterile single-use medical product, emphasis has been placed upon the
assurance of sterility afforded by the sterilization process, or the probability of the process producing
a nonsterile item. This probability is generally expressed as 10−6 and has been given several
connotations:

–   less than one chance in one million that a contaminant will survive on a medical product;
–   less than one nonsterile item in one million items;
–   not more than one living microorganism in one million items.

These are attempts to express a theoretical concept in understandable terms. While probability can
be determined quite precisely in industrial sterilization, it also looks at safety, which may result in a
more rigorous sterilization process than is necessary. A neglected aspect is the probability of the one
nonsterile item, or that one surviving organism in a million items, or in a thousand items, that causes
an overt infection. This probability, although more difficult to define, must be much less than the
probability of the process yielding a nonsterile item.

The discussion will be limited to sterile single-use medical devices.
It is generally acknowledged that sterile pharmaceuticals or parenterals that are sterilized by

filtration and aseptically packaged rarely achieve a level of assurance of sterility as high as that of
devices. When parenterals can be sterilized in their final container, the assurance is indeed 10−6.

Before examining the possibility of sterile single-use medical devices serving as a potential
source of infection, let us first examine some aspects of the infection process.

A vast amount of information is available concerning the many virulence factors that endow
microorganisms with disease-producing capacity. More recently, it has been appreciated that altered
host-defence mechanisms predispose the host to develop infections. There are many types of altered
host-defence mechanisms, genetic and acquired, e.g. secondary to other diseases, and iatrogenic. It
appears that a diminution in any host-defence system opens the door to microbial invasion and
disease. This is true, irrespective of whether the microorganism is a ‘classic’ pathogen or a member
of the host’s own normal flora with relatively low virulence under normal circumstances. The latter
organisms have been called opportunistic pathogens.

Opportunistic infections, particularly in hospitalized individuals, have become major disease
problems in recent years. Of the major sources of infection, the most important, by far, is man himself.
Members of the patient’s normal microbial flora may seize the opportunity, when host resistance is
lowered, to invade and multiply. On the other hand, certain microorganisms of potentially greater
capacity to produce disease may be harboured only by a few persons, and be transmitted from these
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persons to other more susceptible individuals, in whom they may produce infection and disease.
Microorganisms may also be transmitted by inanimate objects, that not only permit survival and

person-to-person transfer of opportunistic microflora, but may serve as numerical amplifiers of the
microbial population. Distilled water and saline can support the growth of bacteria responsible for
nosocomial infections. Devices, on the other hand, would at most only permit survival.

Consider now the probability of causing infection by a nonsterile medical device that has been
derived from a sterilization process permitting no more than one nonsterile device in x number of
devices. The device must contain at least one viable microorganism. The probability of having more
than one organism is extremely low, as illustrated by an exaggerated example (Figure 1).

Figure 1.   Probability of survivors. Gamma radiation dose: 2.5 Mrd. Resistance of bioburden: D
value = 0.3 Mrd.

If we assume, a single device is contaminated with one million microorganisms and that every one
of those organisms has a very high order of resistance, a D value of 0.3, and then subject the device to
the commonly used radiation dose of 2.5 Mrd, we can calculate the probability of survivors. The
probability of one or more organisms surviving is 4.6 × 10−3, or less than one chance in 200; of two
or more surviving is 1.1 × 10−5, or less than one chance in 90 000; of three or more surviving is 1.7 ×
10−8, or less than one chance in 58 million; of four or more surviving is 1.9 × 10−11, or less than one
chance in 50 billion (or in the British system, 50 milliard).

Assuming a more reasonable bioburden of 1000 microorganisms, and that they all have the same
high order of resistance, the probability of one or more organisms surviving is 4.6 × 10−6, or less than
one chance in 200 000; and for two or more, one in 1.1 × 10−11, or less than one chance in 90 billion
(Br: milliard); and for three or more is beyond the ability to calculate, but is probably in the order of
one chance in 50 or 60 quadrillion (Br: thousand billion).

Let us assume that one, or even a few, organisms survive on the device. What is the potential for
causing infection? First, we must consider the intended use of the product. If the product is used to
drape the patient, or gown the surgical team, an organism located somewhere on many square feet of
fabric is unlikely to be dislodged and even less likely to gain access to a suitable environment for
survival and growth. If the product is to be implanted or comes in contact with mucosal or
subepithelial tissue, the probability of elution to a suitable environment is greater. However, the
probability is very much greater in the case of an implanted prosthesis than for a wound dressing.
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Even if one or a few organisms drop off or are eluted from a device, what is the potential of
causing an infection? Only a very few of the most virulent microorganisms are capable of initiating
infection when a single cell gains access to subepithelial tissue, e.g. certain rickettsial, mycobacterial
and Pasteurella species. With other organisms, a thousand or more may be required. Most bacteria
require a critical initial number of cells even to initiate growth in vitro in a nutritionally ideal culture
medium. This is especially true when placed in a new environment.

In addition to the number of microorganisms required to produce an infection, other questions
should be considered.

–   Was the bacterium injured by the sterilization process?
–   Will the bacterium survive storage in, or on, the product?
–   What is the probability that the bacterium in question will reach an appropriate site?
–   What is the probability that it will multiply?
–   What is the probability of encountering a host environment with impaired defence against

invading bacteria?
–   What is the probability that it will reach the minimum population level to result in infection?

We cannot answer all of these questions, but we do have an idea of the nature of the organism that
can survive a sterilization process. This provides a level of sterility assurance. The organism may be
injured, but also it may adapt to the rigours of survival in nature and endure the severe conditions of
the sterilization process. Such microorganisms are rarely, if ever, the ‘classic’ pathogens. They are
nevertheless, opportunistic pathogens or saprophytes poorly able to breach a host’s defences, even if
impaired. In the absence of defences, they may be able to survive and multiply, provided an adequate
number of cells find an appropriate nidus and recover from injury.

The probability of an opportunistic pathogen causing infection is indeed difficult to assess.
Nevertheless, the probability ranges from finite to insignificant. For products where the probability of
a survivor causing infection is insignificant, the sterilization process may reasonably be designed to
be less rigorous and provide a lesser degree of sterility assurance than the process for more critical
products. Further, by our knowledge of bioburden and our ability to determine the level of sterility
assurance during process validation, we may be able to reduce the severity of an ‘overkill’ cycle to
more reasonable conditions.

Regardless of the criticality of the end-use of the product, the danger of a single-use medical
device transmitting microorganisms to the patient lies neither with the sterility assurance of the
sterilization process, nor with the probability of a lone survivor finding access to the host It is
contingent more upon the integrity of the package against recontamination after sterilization through
many stages of mishandling and misuse. The probability of introducing opportunistic pathogens by
improper storage and handling is high.

The packages for sterile devices have been designed to prevent recontamination of the device
when held in reasonable storage conditions. The manufacturer can control the sterilization process
and the quality of the packaging of medical devices. He has exerted every effort to achieve a high
order of sterility assurance and package integrity.

There is a need to educate hospital personnel in the use of good storage procedures, as well as in
the proper handling and opening of sterile packages. The incidence of contamination of surgicalSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



materials in the operating theatre during surgery is often dismissed. Instruments and materials
employed in surgery are generally not considered to be an important source of the organisms causing
postoperative infection. Although there have been numerous microbiological studies made in an
attempt to associate high bacterial fallout with possible instrument contamination, only one among the
more recent studies, to my knowledge, has measured the contamination of the actual instrument during
the course of surgery. The work was conducted by a graduate student in partial fulfilment of a Master
of Science degree at the University of Minnesota, under the guidance of Velvyl W. Greene (1). The
data are as yet unpublished, but the thesis is accessible. It is relevant enough to the subject of my
discussion to review a portion of the work in some detail.

The study was conducted in two operating theatres set aside for cardiovascular surgery in the
Mayo Memorial Hospital. Cardiovascular surgery was selected because it was a clean operation and
because its long duration provided ample time for repeated sampling. Since occasionally other clean
operations were performed in these rooms, they were included in the study. Thirty-two operations
were sampled: twenty-one cardiovascular and eleven other clean operations. The average duration of
the operations was four hours. The average number of metal instruments used in an operation was
169; the average number sterilized for an operation was 344. Therefore, there were plenty of unused
instruments for sampling.

All sampling was done in the operating room by the rinse technique in culture medium and only
the tips of the instruments were rinsed. The contamination was expressed as a contamination
probability index (CPI) and defined as the ratio of the number of positive samples to the total number
of instruments sampled. Quantitative results were derived from instruments and stainless steel strips.
Other materials, such as used instruments, tubing, sutures, tapes, basin saline, and irrigation saline
were sampled. These will not be discussed, since the data on unused instruments were sufficient for
illustration.

As would be expected, contamination of the unused instruments increased with time of exposure.
At the beginning of operation (zero time), the exposed instruments had a CPI of 0.017, or 1.7% of the
instruments were contaminated, rather than the theoretical minimum of 0%. This could not be
attributed to the failure of the sterilization process, but was most likely the result of unwrapping and
handling, or to the sampling procedure.

After four hours, the average length of cardiac surgery, the exposed unused instruments had a CPI
of 0.69 ± 0.08, which means that 70% of the sterile instruments were contaminated within four hours
of operating-room exposure. The organisms found were mainly micrococci, diphtheroids, and bacilli,
suggesting human contamination as a source. If so, the organisms were most likely disseminated as
airborne particles by the operating room personnel or the patient. These observations were made
during surgery conducted by expert surgical teams in modern, well-ordered surgical theatres.

The author concludes the thesis by the statements: ‘A lot of money, time and effort is spent in
developing the proper sterilization of materials. It seems foolish to attain this initial sterility and then
to allow materials to be unnecessarily exposed to the operating environment’.

In light of the microbiological fate of medical devices after sterilization, it would appear that less
rigorous sterilization conditions may provide an adequate assurance of safety against infection in
certain instances. This does not mean that we can be lax in our attention to sterilization, but that we
may adjust our cycles to provide the needed level of assurance.
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designation for ‘level of sterility assurance’ to replace the absolute term ‘sterile’. As mentioned
earlier, in most countries only one level of sterility assurance, 10−6, is accepted as sterile. In Sweden,
for example, drugs that are not sterilized in their final container, i.e. having a level of sterility
assurance of less than 10−6, may not be labelled ‘sterile’. They are referred to as ‘aseptically
produced products’. Recently, the Swedish authorities have proposed that medical devices with an
assurance level of 10−3 be called ‘surgically clean’.

While many have been hoping for an expression to replace the word ‘sterile’, the late Ronald
Campbell of the Bureau of Medical Devices of Canada has been most prolific in offering suggestions.
Among his designations have been ‘Clinical Hazard Index’, ‘Potential Hazard Index’,
‘Microbiological Safety Index’, and finally ‘Microbiological Survival Index’ (MSI), defined as the
absolute value of the logarithm of the probability that any one device is contaminated with a viable
microorganism. Thus, for a product with a level of sterility assurance of 10−6, the word ‘sterile’ on
the label would be supplemented or replaced by MSI 6. While there are several products in the US
and Canada that bear an MSI designation along with the word ‘sterile’, such labelling has met with
strong opposition by both industry and the medical care professionals. The disadvantages would
appear to outweigh whatever advantages there may be.

There are, however, a considerable number of products in the US today labelled ‘sterile’, that
have been processed, with FDA approval, to levels of assurance less than 10−6. The label in these
cases does not include an MSI number.

If we examine the situation with respect to sterile consumer products (OTC or first aid products),
we are confronted by the question of the actual need for sterility. While there may be a need for a high
level of sterility assurance for some of these products, most are used on minor wounds of which most
do not become infected if unattended. Their function is essentially to protect the wound from further
insult or trauma. This situation was recently highlighted by the incident of nonsterility among sterile
dressings imported from India and the Far East The dressings were imported by a number of countries
where the reaction to the situation differed considerably, as did the assessment of risk involved in
using such dressings.

In the UK, the public was advised to destroy any suspect dressings. Warehouse supplies were
frozen and all Health Authority Supply Departments were informed. In Australia, the products were
recalled to the consumer level. The risk was considered less serious in the UK than in Australia, even
though the British Pharmacopoeia 1980, Appendix XVI, requires a dressing labelled ‘sterile’ to
satisfy the conditions of the sterility test. The British found among the contaminating organisms
staphylococci, streptococci, and clostridia associated with gas gangrene infections (C. welchii, C.
sporogenes, and C. sordellii) and tetanus infection (C. tetani). The clostridia were dismissed as
being present from the soil and as they could be found in any nonsterile dressing. The Department of
Health and Social Security further stated that any wound at the time of injury was likely to have been
contaminated by bacteria in the air and on the skin, and that in first-aid treatment, a clean handkerchief
might be used that could contain such organisms. The Department expressed the view ‘that the risk
from the dressings is slight, nevertheless, it is undesirable that a product labelled “sterile” should
contain organisms as this could increase the possibility of use where sterility is of particular
importance’.

Bandages, as well as dressings, were found contaminated with potential pathogens. The difference
between a dressing and a bandage is somewhat puzzling. It is usual practice to use a dressing to dress
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or cover a wound and hold it in place with a bandage. However, the British Pharmacopoeia 1980
and the British Pharmaceutical Codex 1979 include bandages and swabs under the general category
of surgical dressing, whereas US Pharmacopeia never mentions the word ‘dressing’ and uses only
the word ‘bandage’. Therefore, it appears that bandages are intended also as wound dressings. In the
USP, a gauze bandage may be sterilized or not sterilized, in which case it must be so labelled. On the
other hand, adhesive bandages are required to be sterile. Most countries do not have the latter
requirement.
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Conclusion
The probability concept of sterility has lead many to question the need to process all surgical and
first-aid materials to the same level of sterility assurance. In some cases, the need for sterility has
been questioned. Should there be, in the judgment of the regulatory authorities and the medical
profession, a need for sterility, then it should be possible to decide upon a level of sterility assurance
based upon the ‘end-use’ of the product or product category. Should there be no need for sterility, but
some high order of microbiological cleanliness, then requirements should be defined in a more
meaningful way than a total microbial count and freedom from harmful organisms or freedom from
pathogenic organisms. The latter requirement cannot be met, since potential pathogens and harmful
organisms will be found on a product, if enough samples are examined.

In most cases, by setting a maximum microbial count per gram of product, the probability of these
undesirable organisms being present will be reduced to a level at which the product will not
endanger the public health. Not even by setting qualitative limits, expressed as freedom from specific
organisms in a specific amount of sample tested by a defined test method, can we guarantee absolute
safety of nonsterile products. We cannot guarantee absolute ‘freedom from pathogens’ or ‘harmful
organisms’ for nonsterile products any more than we can guarantee ‘100% sterility’ for sterile
products.
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Educational Considerations
Joan F. Gardner

University of Melbourne
Melbourne, Victoria, Australia

Recent developments in the design and technology of sterilization processes, which commenced
around 1950, have generated a new approach to the discipline. A need for more sophisticated
education has been created than was previously considered adequate, when sterilization in hospitals
was limited to steam and dry heat. The following examples, which demonstrate the need for increased
basic knowledge and special training, are:

1. The reliability of steam sterilization in hospitals was upgraded by the establishment of central
sterilizing departments and the development of prevacuum porous load sterilizers in Great
Britain. This followed the revelation of serious technical faults and human errors during
investigations into possible causes and remedies for epidemics of hospital-acquired infection by
antibiotic-resistant staphylococci.

2. The use of heat-sensitive synthetic materials in the manufacture of complex instruments and for
the production of a wide variety of medical devices necessitated the development of low-
temperature sterilization processes using ionizing radiation or ethylene oxide. The latter is also
used in hospitals.

3. The large scale commercial production of medical devices introduced the concept of sterility
assurance and recognition that no process can be guaranteed to sterilize every article treated. The
methods which are required to ensure an acceptably low frequency of unsterile items by
minimizing initial contamination levels have been set out in codes of Good Manufacturing
Practices that apply to the pharmaceutical and medical device industries.

4. Murrell and Scott published a paper of fundamental importance in 1966 (1), in which the
relationship between water activity, or relative humidity, and the so-called dry heat resistance of
bacterial spores was clarified. The findings explained the irregular results which had formerly
been common in the determination of resistance to dry heat.

5. An important development, which is occurring at the present time, is the replacement of
electromechanical systems by microprocessor technology for the automatic control of
sterilization cycles.

As a result of these and other developments, the educational requirements for persons who design,
supervise, or operate modern sterilization processes greatly exceed the teaching that is normally
provided in medical and dental science, pharmaceutical microbiology, and in postgraduate, as well as
basic nurse training. The engineers who have to service modern sterilizers also benefit from some
knowledge of microorganisms and the conditions required to kill them.

This leads to consideration of the opportunities for specialized education that are now available
in Australia. The initial step towards their establishment was the formation of the SterilizationSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



Research and Advisory Council of N.S.W. Similar common-interest societies now exist in all
Australian states and have played their part in the planning and operation of organized courses for
hospital staff. The Australian Federation of Sterilization and Disinfection Societies has united them
with the principal aim of co-ordinating education objectives.

The courses in New South Wales have been operating the longest and have trained the largest
number of hospital sterilizing department employees. My own experience is limited to the Victorian
course, that has produced 204 successful students during the past eleven years. It is conducted at
Mayfield Centre, which is an educational facility of the Victorian Health Commission, and is
organized by a specially appointed lecturer, who is a microbiologist with hospital diagnostic and
university teaching experience. Other lecturers contribute in accordance with their special
knowledge. Although the course does not assume a high level of prior knowledge, it is designed to
reach the level required by hospital staff with consultative or supervisory responsibilities in the
microbiological, technical, and engineering aspects of sterilization and infection control. Central
Sterilizing Department (CSD) supervisors and their deputies, infection-control sisters and theatre
sisters occupy most of the 24 places that are available each year. However, hospital microbiologists,
pharmacists, engineers, and domestic service supervisors are also encouraged to enrol. This policy is
intended to promote dialogue and mutual understanding between people who are involved in the
different facets of infection control.
The course consists of the following units, all of which must be taken:

1. Microbiology
2. Heat sterilization
3. Bacterial filtration
4. Sterilization by ionizing radiation and chemical vapours; also chemical disinfection of inanimate

objects and body surfaces
5. Middle management
6. Infection control.

Each unit consists of full-time attendance for one week at lectures given in Melbourne, followed
by four weeks of study and assignments, and a two-hour written examination. A practical project is
also undertaken with the consent of the hospital management. The Mayfield Centre certificate is
awarded for a final aggregate mark of at least 60%.

I wish to select the microbiology component of the course for detailed comment. It is designed to
assist the nurses, and any other students who are not already conversant with the subject, to
understand the nature, distribution, and behaviour of the invisible organisms that are the target of all
sterilization, disinfection, and aseptic procedures. It is regrettable that nurses who are appointed as
CSD supervisors or infection-control sisters have no more than a superficial acquaintance with the
subject. As the organisms can only be studied indirectly by use of the microscope and cultural
methods, the subject should be taught by qualified microbiologists and some practical work should be
included. The Mayfield course students spend three days in a teaching laboratory where they perform
some basic techniques that enable them to become more familiar with the organisms at first hand. It is
made clear to them that such a brief introduction does not qualify them as microbiologists, but it is
pleasing to see their developing interest, and a desire for more time to be allotted to this part of theSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



course is frequently expressed when they evaluate it.
The students who come to the course equipped with some knowledge of microbiology discover

their limitations regarding sterilization practice in the next two units, as their degree or diploma
courses are unlikely to have given sufficient time to this applied aspect of microbiology. On the other
hand, the infection-control sisters sometimes feel that this part of the course is in excess of their
needs. They are advised that they should know it, at least in principle, and that they might well need
the information in a different job or at a different hospital. In the final unit, all students are exposed to
the practical experience and sometimes different views of senior hospital microbiologists with regard
to infection control.

The course which I have described is not designed for the needs of the main work force of the
sterilizing department, as it requires a certain level of general education that prepares the student for
classroom teaching and written examinations. In-service education is required to promote
understanding of the tasks that are actually performed. However, an appropriate teaching manual
would be required to ensure that what has been learnt will apply to all hospitals.

There are no special courses, outside the university and technical courses, that include applied
microbiology for personnel in industrial sterilization. A course of the Mayfield Centre type is suitable
but few places are available because priority must be given to hospital staff. However, occasional
lectures and seminars provide up-to-date information on the topics selected. They also bring people
with common interests together, with resultant sharing of knowledge and experience. All of us, who
are at this Symposium, will benefit from the opportunity to view our own responsibilities in the
context of the wider Australian and overseas scene.
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Introduction
The failure of a manufacturer to use proper procedures may cause him to run foul of various sections
of Federal and State legislations, such as The Customs Act, The Therapeutic Goods Act, The Pure
Foods Act, The Sale of Goods Act, as well as the advertising provisions of The Trade Practices Act.
Added to this, common law sets out obligations imposed upon those who market drugs.

Similarly, there is a responsibility by hospitals and other institutions to ensure that products and
equipment used by them do not cause damage to patients by using nonsterile products.
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Manufacturer’s Liability
Common law liability which can arise by virtue of a manufacturer’s failure to carry out adequate
sterilization is based on the tort of negligence. The basic ingredients of this tort in laymen’s terms are:

(i)     a duty of care
(ii)    a breach of the duty of care
(iii)   damage consequent to the breach.
Until the 1930s a manufacturer did not owe a duty of care to a party with whom he had not

contracted. However, in 1932 the whole situation changed.
Two old ladies visited a shop, and one of them purchased from the shopkeeper a bottle of ginger

beer. The purchaser then handed the opaque bottle to her friend, who began to drink from it. After she
had started to drink, she discovered a partially decomposed snail in the bottle. She subsequently
claimed that this made her sick, and that she wished to sue someone for negligently allowing the snail
to get into the bottle. As the retailer had not been responsible, and had no opportunity to inspect the
bottle, and so it was not possible for her to sue him, she brought an action against the manufacturer.
Ultimately, the House of Lords proclaimed what has turned out to be an introduction of the law of
general manufacturer’s liability.

In the words of the court, spoken by Lord Atkin, ‘You must take reasonable care to avoid acts or
omissions which you can reasonably foresee would be likely to injure your neighbour. Who, then, in
law, is my neighbour? The answer seems to be, persons who are so closely and directly affected by
my act that I ought reasonably to have them in contemplation as being so affected when I am directing
my mind to the acts or omissions which are called in question’. This statement is rather imprecise and
it does not provide an answer for every situation. It is sufficiently tight to cover a batch of products to
pass through the manufacturing process without complying with sterility requirements and render the
product safe for use. Specifically, the court held that ‘a manufacturer of products which he sells in
such a form as to show that he intends to reach the ultimate consumer in the form in which they left
him with no reasonable possibility of intermediate examination and the knowledge that the absence of
reasonable care in preparation of putting up the products, will result in an injury to the consumer’s
life or property, owes a duty to the consumer to take that reasonable care’.

Having shown that the manufacturer has the responsibility to the ultimate customer, the next
question which must be answered, is the level of behaviour by the manufacturer, that renders him
liable. Lawyers call this the ‘standard of care’.

The standard of care is breached when the manufacturer acts in a way, in the production of his
goods, that can be described as unreasonable. In most cases, it will be impossible for either the
manufacturer or the consumer to ascertain exactly how a defective product came to be produced, viz.
passed through the various processes including quality control and/or which member of the
manufacturer’s staff was responsible for the breakdown. The result of this problem has been to make
the manufacturer the virtual insurer of his product. However, the law does not demand that the
standard be so high, that liability will result, even for situations in which proper care could be
eliminated. Defects that are practically undiscoverable are excluded, but once knowledge of the
defect is gained, steps must be taken by the manufacturer, either to warn consumers of the likelihood
of damage, or to rectify the procedure.Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



The following is an example, in a rather bizarre way, that is applicable to the obligation imposed
on hospitals. Mr. Roe was suffering from a damaged knee. He visited his medical practitioner who
recommended that he had his cartilage removed. Mr. Roe subsequently entered hospital. Prior to his
entering hospital, the medical practitioners at the hospital were concerned that a particular procedure
was causing problems. The procedure involved spinal anaesthetic. The hospital staff had discovered
that often, after spinal injections, infection appeared around the site. It was further discovered that the
cause of the problem was the local anaesthetic, Nupercaine*, that was stored in glass ampoules on the
shelves of the hospital pharmacy. In the pharmacy, the ampoules were not in a sterile environment,
and investigation discovered that when taken into the operating theatre, the side of the ampoule came
in contact with the needle, that was then inserted into the patient’s back. The bacteria on the side of
the ampoule caused an infection. To eliminate this problem, it was decided to store the ampoules in
the pharmacy in a sterile environment. As the ampoules were made of glass, it was suggested that the
best way to store them was to immerse them in a suitable solution. Phenol was chosen. When Mr. Roe
entered hospital, it was decided to use Nupercaine and an ampoule was sent up from the pharmacy.
The anaesthetist held the ampoule up to the light, to ensure that there had been no damage to it, and to
ensure that no foreign matter had entered into it. Two weeks after a successful operation, Mr. Roe
became a paraplegic. The cause of the paraplegia was an effect on the spinal cord by phenol.
Investigation revealed, that some time between the date of manufacture and the time of removal to the
operating theatre, a microscopic crack had appeared in the ampoule. This crack was not visible to the
anaesthetist who examined the ampoule prior to the removal of the Nupercaine. Not finding anything
apparently wrong, the contents of the ampoule were removed and the operation proceeded. It was
subsequently discovered, that the presence of phenol in the ampoule of Nupercaine was a combined
result, that the ampoule had sustained a microscopic crack, and that the composition of the phenol and
Nupercaine enabled a free flow of liquid through the crack. Mr. Roe had received an injection of
phenol and Nupercaine. Obviously displeased, Mr. Roe sued those he considered responsible for his
new disability. The ultimate question, which the court had to decide, was whether the hospital had
breached its duty of care toward Mr. Roe by not discovering the problem, or alternatively, by not
realizing that the peculiar characteristics of the products used could render the procedure dangerous.
In reaching his decision on the reasonableness, or otherwise, of the hospital’s behaviour, Lord
Denning stated:

‘It is so easy to be wise after the event and to condemn as negligence that which was only
misadventure. We ought always to be on guard against it, especially in cases involving hospitals and
doctors. Medical science has conferred great benefits on mankind but these benefits are attended by
considerable risks. Every surgical operation is attended by risks. Doctors like the rest of us have to
learn by experience and experience often teaches in a hard way. Something goes wrong and shows up
a weakness and then it is put right. That is just what happened here. Dr. Graham sought to escape
danger of infection by disinfecting the ampoule. In escaping the known danger he unfortunately ran
into another danger. He did not know that there could be undetectable cracks but it was not negligent
for him not to know it at that time. We must not look at the 1947 accident with 1954 spectacles’.

In the concluding paragraph of his decision, Lord Denning stated:

‘This man has suffered such terrible consequences that there is a natural feeling that he should be
compensated. But we should be doing a disservice to the community at large if we were to impose
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liability on hospitals and doctors for everything that happens to go wrong. Doctors would be led
to think more of their own safety than of the good of their patients. Initiative would be stifled and
confidence shattered … We must not condemn as negligence that which is only misadventure’.

The third ingredient of the tort of negligence, namely foreseeable consequences, does not concern
us greatly here. The law does not require the need for foreseeability of specific consequences
(damage), but rather general consequences. That the failure to provide adequate (reasonable) sterility
procedures could reasonably cause damage to the ultimate user of a product (the patient) is without
question.

Within the medical supply industry, a number of specific questions arise, in particular, the effect of
the manufacturer’s instructions. It is not uncommon for manufacturers to label goods as being suitable
for ‘one purpose only’ and not suitable for reuse. Hospitals have found that it is possible to resterilize
some of the appliances. It is sometimes thought that the failure to carry out directions automatically
renders the user liable, if subsequent damage is caused to a consumer. In fact, this is not the case. The
test for negligence is provided by the courts, and depends on the reasonableness or otherwise of the
actions of the individuals, or institution, or company accused of being negligent.

The existence, or otherwise, of a manufacturer’s instructions will be no more than one extra
element to be fed to the court, in order that it can determine the reasonableness, or otherwise, of the
user’s actions. It would be foolish, if this were not the case, as we would then be faced with the
spectacle of a manufacturer determining the law, possible in a manner that has the inevitable effect of
increasing sales. Nevertheless, it should be pointed out that where goods are labelled with a warning
as to their use, or suitability, any person who wished to vary this use, should be prepared to justify the
variation.

In a well-known case in Canada, a medical practitioner neglected to follow the instructions
contained in a packet of neomycin, that if used on an individual over a protracted period, an
audiogram should be taken at regular intervals. This, the medical practitioner failed to do, and, even
though the patient’s subsequent deafness could not be attributed to any mistake in diagnosis, or use of
neomycin, it would have been prevented. Had the audiogram been taken, the problem would have
been discovered and the treatment suspended. The court held, that the failure to heed the warning,
which it accepted as scientifically accurate, constituted actionable negligence.

If we assume that the damage to the consumer/patient has been caused by the failure of the drug
manufacturer, or institution, to provide a sterile product, it can be seen that the plaintiff must show
that the manufacturer was negligent in not so providing. As is often the case, the quality of the goods
is revealed well after manufacture or use, and then the defective goods usually come only from one
batch. In a repetitive process, it is, of course, difficult for the plaintiff to identify the specific area of
fault, as all previous and subsequent batches are up to standard.

This hurdle is overcome in the UK and the US by the use of a legal maxim res ipse loquitur that
when literally translated means ‘the thing speaks for itself’, or put plainly, as a general rule, but for
the fact of negligence, the product would be up to standard. In the UK and the US, when this argument
is put, the onus of proof moves from the plaintiff to the defendant, whereupon the defendant (in our
case the drug manufacturer or institution) would have to show that there was no negligence. If this
cannot be done, and this is often the case, the presumption applies, and the plaintiff will succeed. In
fact, the reason why the cause of Mr. Roe’s paraplegia was ever discovered, was that a failure toSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



ascertain the cause would have given rise to the application of the res ipse loquitur doctrine with the
probable result of there being a successful plaintiff.

In Australia, the situation is different, and the doctrine comes forward only as ‘evidence’, and
while the submission may be successful, the onus of proof still remains with the plaintiff. That is, the
plaintiff must satisfy the court that the damage was caused by negligence.

It is possible for the plaintiff to do this by inference, as is pointed out in the celebrated case of
Grant v. Australian Knitting Mills Ltd. In this case, Dr. Grant purchased a pair of underpants from a
retailer and proceeded to wear them continually for six days. He subsequently suffered from a
dermatitis, apparently caused by sulphur residues in the fabric. Although four million similar
garments had been sold without complaint, the court held that ‘if excess sulphites were left in the
garment that could only be because someone was at fault. (It) is not required that the plaintiff specify
who did wrong. Negligence is found as a matter of inference from the existence of the defects’. As
already pointed out, however, this could be rebutted, if the defendant produced evidence, as in Roe’s
case, that demonstrated no negligence.

Difficulties have, to some extent, been overcome by the passing of the Federal Trade Practices
Act. Under this Act, a manufacturer (but not a hospital) will be liable for loss or damage caused to an
ultimate consumer, where:

(i)     the goods were not reasonably fit for the purpose for which they were supplied (S74B)
(ii)    the goods are not of merchantable quality (S74D).
There can be no doubt, that in manufacturing a pharmaceutical product that does not satisfy the

requirements of sterility, it will not be of merchantable quality.
Traditional defences to common law actions in tort have been removed, and should a situation

similar to that explained earlier in Roe v. Minister of Health arise, the matter would be handled
differently. Assume that the drug company decided to store the ampoule in the sterile environment,
and that when subsequently used by the hospital, the patient suffered damage. It would not be
necessary for the plaintiff to prove that the decision to store the ampoule in the phenol was negligent.
It would be sufficient for the patient to show that the ampoule, as supplied, was not reasonably fit for
the purpose for which it was intended (as it clearly would not be) for liability to result. As distinct
from traditional Sale of Goods legislation, the Trade Practices Act enables a successful plaintiff to
obtain damages similar to those that he would have been able to obtain, had the action been one of
negligence.

An extremely relevant clause in the Trade Practices Act is S74A(4). This section deems an
importing corporation to be the manufacturer, so that a product manufactured overseas, not reasonably
fit, marketed in Australia will be deemed to have been manufactured by the importer, and therefore
the importer will be liable for any foreseeable damage to the consumer.

An interesting aspect of this provision of the Trade Practices legislation is that it has produced no
decided cases. It is difficult to understand why lawyers would prefer the common law grounds of
product liability, but it has been suggested that when the Trade Practices Act was first introduced, it
concentrated mainly on the regulation of marketing and advertising, and the product liability sections,
introduced later, have been largely neglected. Of course, it would be foolish for manufacturers to
ignore its significance and the added responsibility it brings to them.
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DISCUSSION
SESSION III

Q. by L.F. Dodson – Australia
Dr Gaughran, I agree completely with almost everything you say about the risks associated with

sterilization, the fact that infection requires pathogenic organisms, and that these organisms are
pathogenic only in particular circumstances. I agree that Clostridium on an open wound is probably
not of any great importance, but on an amputation stump or a compound fracture it is a dangerous
organism. I am not sure what your proposition or what your comments would lead to. It seems to me
that if we accepted what you have said, one may not be precise in a strict guarantee of sterility. It
would have very distinct effects and could be coped with only with special regulations. If there was a
product regulation system, one could regulate on the risk and on the product at the same time. As in
the United States, all drugs of a certain kind have to meet a particular standard, and so, I am not quite
sure how you could adopt your hypothesis. I think, what you have said relates to a remark I made, that
when a quality control manager or a regulatory agent passes something or accepts a sterilizing
process, he is in fact making a social judgment based on experience and not based upon calculations
of bioburden, which I do not think are particularly accurate. What they are saying is that we have been
doing something for a sufficient length of time to know what the community accepts, namely if there is
something amiss we do not regard it as seriously as we should, as for example the high road toll.
Judgments are really made in this way rather than on calculations of probability. This leads me to say
that I do not believe, we can adopt your proposition unless we change to a system of regulations, and
then if we do adopt the system, we have to wait another 50 years to know whether in fact it is
acceptable.
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A. by E.R.L. Gaughran – USA
I do not mean to usurp the prerogative of the medical profession or second-guess the regulatory

agencies. I thought that on a product to product basis, or category by category basis, an acceptable
level of sterility assurance might be agreed upon by the medical profession and the regulatory agency,
which would assure adequate safety at a particular level of sterility assurance, which you can have
with industrial products and arrive at it quite accurately. This is now being done in the US and
Canada. However, when it comes to a nonsterile product, some of the imposed conditions to obtain
absolute freedom from contamination are just not achievable. What you have to do is set limits by
way of numbers to provide assurances that they will not be a hazard to public health.

_______________
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Q. by J.F. Gardner – Australia
I would like to ask Brian Bromberger if the administrator or supervisor of a hospital sterilizing

department is asked by the medical or nursing personnel to sterilize something by a method that is not
ideal or to sterilize something with insufficient time available, who is responsible if anything goes
wrong. That is, provided, of course, the user of the instrument has been told by the sterilizing
department personnel that the method is not guaranteed.

Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



A. by B. Bromberger – Australia
I assume that as the result of the event somebody has suffered damage. If you have, as an example,

a Jiminy Cricket sitting on your shoulder, telling you what is the best thing to do, and he says ‘that is
not how you as a professional should function’, and despite this you do proceed in doing what you
have been asked, then you take upon yourself the liability for your own action. We are all liable for
our own action within a hospital environment, as an employer is also liable for this action. So if you
do it, even though you say to somebody ‘I don’t think it is the right thing to do’, you are still liable for
having done it, as is, as I say, your employer. So the obvious thing for you to do, if you are asked to
carry out a procedure that you do not feel is the correct procedure, you say ‘I will not do it’ and you
let the Chief Executive Officer have a fight with the Medical Superintendent, who then will have a
fight with the Matron, and when they have sorted it all out, they will dig you up and you will be right.
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Q. by R.A. Anderson – Australia
May I follow up on that last question. How do you stand with your conscience when the patient

dies because some material is not available and it cannot be made available in a form which meets
the normally accepted manufacturing standards? I can understand that an institution might have some
responsibility, but the responsibility has been given to the individual who has to make a professional
judgment that the item cannot be properly sterilized, and that if the item is available, in many
circumstances it could be used quite satisfactorily.
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A. by B. Bromberger – Australia
There are many people who say the law is stupid, but nevertheless it is not a complete ass, and

what it, in fact, says is based on ‘reasonable’ in the circumstances. This is on top of everything.
Hence, what might be regarded as reasonable on the side of a road or in a bush nursing hospital,
might be totally different from what might be reasonable in a large hospital, such as the Prince of
Wales Hospital.

_______________
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Q. by G. Reeves – Australia
My question is directed primarily to the legal aspect. A week ago, I heard a physician ask the

same question that has been asked here, namely, that if the manufacturer indicates that a device is for
single use only, and if it is reused, and a problem occurs, where did he stand legally. A lawyer at the
time said that the situation lay with the person who reused it, namely the physician or the institute
authorising its use. As a manufacturer, when I went to a legal adviser and insurer, who made it quite
clear that if I do not put ‘For one-time use only’ on the device, it was subject to the possibility of
resterilization and reuse, then I was possibly condoning resterilization. In other words, there was no
control over the way it may be resterilized. Therefore, this was my safeguard, and indeed their
safeguard, because as I understand it, if the medical profession is sued, they will spray bullets at the
manufacturer, and then the manufacturer ducks, hands it to his insurer who proceeds to take it from
there.

I would like to ask a question, whether you still feel that the person who reuses a single-use item
may not be liable.
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A. by B. Bromberger – Australia
The manufacturer does not make the law, and all the manufacturer can do is to recommend the

correct use of his product. It may well be that the manufacturer who is very anxious to sell one
million products will say, use only once, which means that a product that can be used ten times will
not be used ten times. So, the manufacturer cannot stipulate law. If, however, a manufacturer of a
medical or surgical appliance says ‘Use this only once’, then that obviously is an indication to the
medical practitioner or hospital that it is intended to be used only once. If the user wants to use it
more than once, then he has to take steps that are ‘reasonable’. I am not a microbiologist, but if it is
possible to resterilize the particular appliance, then the fact that the manufacturer has said ‘Do not
resterilize’ does not make it actionable. It becomes actionable if the procedure that is involved is
affected. So, as far as the ultimate consumer who is damaged is concerned, the ‘Use-only-once’
labelling is simply a warning to the person who uses the item or appliance.
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Q. by E.R. Pavillard – Australia
I would like to question Brian Bromberger further on this point, as we have left an important point

floating. Mr Bromberger, you said earlier that the decision as to whether the item could be sterilized
and used again safely was in the hands of the microbiologists, so to speak. One has to remember that
those involved may not be microbiologists, and that many hospitals where this would be done may
also not have a microbiologist, or if they do, he may not be directly in charge of the sterilizing
department. Therefore if a problem occurred, the question of responsibility would be on shaky
ground.
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A. by B. Bromberger – Australia
Well, this carries on really from the last question because if you did decide to go against the

manufacturer’s recommendations in an institution where you could not get expert opinion, and if
damage occurs, then it would be evidence of your negligence. Just because the manufacturer says you
cannot do it, it does not mean, it is negligent if you do so. It will only be negligent if it is unreasonable
for you to do it. The unreasonableness will be decided by what the experts say is ‘unreasonable in
that circumstance’.

_______________
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Q. by T. Bozsan – Australia
Dr Gaughran, are there any new concerted efforts to reduce the CPI values, you quoted in hospital

areas? I am referring to the probabilities of infection during the course of surgical operations.

Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



A. by E.R.L. Gaughran – USA
I find it hard to answer not being an expert in operating procedures, but certainly the number of

instruments that lie exposed to air for long periods of time could be reduced. In one particular study,
the data on sutures came out very much better when sutures were not allowed to lie exposed to the air
for a length of time. All such things reduce probability of infection, but how practical such procedures
are during the course of an operation is another question. I am unable to suggest how to improve
operating room procedures, unfortunately.
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Q. by A. Perceval – Australia
On the last question, I would say that the quality of the air would be important. There are several

points that I would like to make. One is that I get the feeling that the speakers from industry seem to be
asking us to accept products that do not have a degree of sterility of one in 106. I just wonder, is this
cheaper. It seems to me that you are going to need more labels and I feel that most of those in
hospitals are confused enough with what is sterile and what is not sterile, to have things that have
intermediate degrees of sterility. On the legal aspect, Mr Bromberger said that an action would not be
successful if a process was known to be good before and after an incident. This morning Dr Pritchard
said that random sterility tests of small batches or a single manufacture of articles, e.g. additives for
parenteral nutrition fluids, are in fact useless. Therefore, I would like to ask, how can we show that
the process of adding things to bags in a pharmacy was good after an isolated incident of a
contaminated bag that somebody might sue us for.
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A. by E.R.L. Gaughran – USA
May I start at the beginning of the question. First of all, the air in the operating room does not

appear to be the most important source of organisms; it is the operating team and the patient himself.
Secondly, we are not asking that you accept different products that are not sterile. When we speak
about levels of sterility assurance, they are all sterile. The difference lies only in how sure we are
that they are sterile.
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A. by B. Bromberger – Australia
I do not wish to give the impression that you could not succeed if the batch before was alright and

the batch after was alright. What I was endeavouring to point out is that it is often very difficult to
prove, or to find out, exactly what caused the problem, because the batch before is usually OK and the
batch after is usually OK. In the case of Mr Grant, no one else developed dermatitis, so how does this
one man who wears this one pair of underpants and gets dermatitis prove that the company was
negligent in not removing the impurities from the fibre. The problem that this gives rise to, is
answered in the United Kingdom and in some jurisdictions in the United States by saying that only if it
would have arisen by way of negligence, then there is a presumption of negligence. In Australia,
however, we simply say that we can infer, which is not a presumption, that negligence may have
arisen. It can be rebutted, as in the Rowe case, where it was shown how it did occur. This is what I
was endeavouring to illustrate with regard to the batch before and the batch after.
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Q. by A. Perceval – Australia
Yes, I believe you. It is just that I was having a crack at a fellow microbiologist, Dr Pritchard,

who said that random sterility tests are useless and the question is how, in fact, do we know that the
batch before and after was any good when the batch before did not kill anybody.
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Q. by E.R. Pavillard – Australia
Perhaps we can leave that question open. I would like to ask Dr Gardner an important question.

Do you know of any states in Australia where certification of individuals operating sterilizers is
required and are these certifications equivalent to a license?
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A. by J.F. Gardner – Australia
I think that this question should be referred to Mr Frank Hebbard, as I believe that in New South

Wales there might be such a requirement.
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A. by F. Hebbard – Australia
For ethylene oxide sterilization, a license is required.
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SESSION IV

Biological Control
Introduction to Session
William G. Murrell

The scope of this session embraces biological control as related to good manufacturing practice,
sterility testing, and the determination of adequate processes for sterilization of medical products. It
concerns the species of spores used to determine sterilizing processes and the spore challenges
needed to test and validate processes.

We will discuss the problems involved and review the various practices and new developments
and, I hope, solve some of the problems.

Let me introduce this session by making a few remarks about the choice of the test or indicator
bacterium, spore resistance, biological and chemical process indicators, and process quality control
(QC).

The biological component most important in process determination is the basic resistance for
which the process is designed, i.e. the species of bacterium most resistant to the particular processing
conditions being considered. This species is usually fairly arbitrarily chosen to be the most resistant
to inactivation under the conditions encountered in the sterilizing process. These conditions include a
wide variety of complex physico-chemical conditions that occur and change during processing, such
as the various gas atmospheres and pressures generated during processing, the range of water
activities, and the supposedly inert organic materials or environment in which the spore is placed.
There is no guarantee that some species other than the test organism may not survive some of the
above conditions better than the test organism, as many have not been tested under such conditions.
The test organism is usually not a pathogen and is usually much more resistant to the sterilization
treatment than possible contaminant pathogens; hence some of the above uncertainties are balanced by
safety factors of unknown size, often unrecognized. The use of the selected test organisms has
probably not led to faulty process evaluation. However, when new products or processes are being
introduced, the uncertainties in the choice of the test organism and the differing effects of the
conditions of processing on test organisms should be recognized and evaluated.

The resistance of a particular species of spores to inactivation by heat or radiation is not fixed or
constant. It varies with the way the spores are grown, with the physical and chemical conditions
during processing, and with growth recovery conditions. The level of resistance needs careful
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monitoring, particularly during storage under recommended standard conditions, before being used to
determine processes.

Biological indicators, usually spore strips, are often used to validate sterilization processes.
Because of the variability in resistance of spores in such strips, e.g. in their F and z values, the
preparation of spore strips likewise requires biological control at all stages: during sporulation,
preparation and standardization of spore crops, during their shelf life and during the determination of
their resistance. Each stage requires constant appropriate QC. We are concerned with a spore
population that needs characterization in three ways:

(i)     It is necessary to know the population size (no) and the stability of no. Because of the
approximately exponential death or survivor curve, thermal death time increases with increase
in no.

(ii)    The decimal reduction time (D value) of the spore crop must be known.
(iii)   The characteristic shape of the survivor curve needs checking since abnormalities may lead

to errors in the calculated thermal death time (Figure 1).

Figure 1.   Effect of the shape of the survivor curve on the thermal death time (↑) for bacterial spores
having similar decimal reduction times (D values) over most of the survivor curve.
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Figure 2.   Effect of lysozyme in the growth medium on the recovery of heated spores of Clostridium
botulinum 62A [Drawn from data of Alderton et al. (3)].

I cannot emphasize too strongly that QC of biological indicators requires a major effort and must
be done correctly.

The number of contaminating spores, or the bioburden, should be monitored. If it becomes too
high, the carefully evaluated process may be inadequate and understerilization may occur.

In addition to statistical and other inadequacies of sterility tests, the validity of sterility tests
depends on the adequacy of the medium to detect survivors. Constant monitoring of the media and
conditions used to test for survivors is therefore essential. The growth performance of media must be
routinely checked with both standard and sublethally damaged test organisms. The risk that a patient
provides better growth or survival conditions for unrecognized sublethally damaged organisms is
always present. For example, lysozyme added to the medium enables the germination of many heat-
damaged spores that would otherwise be considered nonviable (Figure 2). Germination is increased
resulting in increased D values (1,2). Lysozyme in the recovery medium raised the heat resistance of
Type E Clostridium botulinum spores by 1800-fold and Type A up to 3-fold (3).

The use of biological and chemical indicators as substitutes for process QC in validating
processes has been frequently raised in this Symposium. The advantages and disadvantages of each
have been summarized in Table 1. I would like to suggest strongly that, in view of the problems that I
have indicated above, we are seriously deluding ourselves about the value of biological indicators
and spore challenges. A good chemical indicator of the amount of sterilization treatment given is
probably much more reliable, rapid, less expensive, and more readily automated. Better still, proper
production controls supported by adequate records of process parameters provide far greater
assurance of safety than either biological or chemical indicators. Production control is the mostSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



effective means of ensuring that safe products of the required quality and composition reach
consumers. Appropriate QC records throughout production are essential to good manufacturing
practice and their provision for regulatory authorities should be made mandatory.

Table 1
Comparison of indicators of severity of sterilizing processes

Biological Chemical Process quality control only
ADVANTAGES

Apparent realism
(emulation of practical
situation)

Rapid
Obvious results
Inexpensive
Readily automated

Essential to GMP
No other monitoring needed

DISADVANTAGES
False security if
–   wrong test species

used
–   resistance unstable
–   challenge

positioned wrongly
–   recovery

conditions deficient
–   sterility tests faulty
Time consuming
Heavy work load End
product testing
–   statistically

unsatisfactory
–   inadequate

sampling
–   expensive

Accuracy may be suspect (Chemical change
not proportional to sterilant dose under
some conditions)

If faulty process not
recognized, it may lead to
inadequate sterilization
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Introduction
The paper will cover the current technology of biological indicators with special emphasis on some
of the important scientific and technical issues that are involved in their manufacture and application.
Rationale and scientific justification will be given for the selection of indicator organisms, spore
carriers and packaging, and a critique of the varied biological indicator systems that are employed
worldwide by industries and hospitals. Current US progress in developing biological indicator
standards will be discussed as well as a worldwide plan for development of biological indicator
standards that will alleviate problems worldwide when biological indicators are employed to
monitor, measure, and evaluate sterilization processes. The concept of the biological indicator
reference standard will also be discussed and basic recommendations and justifications for
specifications of each reference biological indicator system given.
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Sterility Monitoring
One of the important quality attributes of many medical devices and drugs is sterility, because the
total absence of microorganisms on medical items can immeasurably reduce the potential for
treatment and nosocomial infections. Sterility is internationally generally accepted as an absolute
quality attribute that guarantees complete absence of viable microorganisms even though sterilization
technologists and scientists basically agree that sterility attainment is a probabilistic function (1). The
use of the words ‘sterile’ or ‘sterility’ on products also has legalistic and government regulatory
ramifications that have a direct impact on both domestic and international marketing. Thus, the
assurance of the sterilization process to produce consistently a measurable degree of sterility
attainment is paramount to the use of the sterility attribute on any labelled medical product. Scientists
have recognized that the simple passage of packaged goods through a sterilizer chamber is not enough
to guarantee attainment of sterility. Sterility attainment and maintenance are derived from the sum total
of an integrated manufacturing process that includes product specifications and assembly, packaging,
environmental monitoring, and validated and controlled sterilization processes (2). The varied
procedures by which sterilization processes can be controlled and monitored include instrumental
records of the physical and mechanical aspects of the sterilization process, sterilized product testing,
and use of sterility monitors, i.e. biological and/or chemical indicators. It is not the purpose of this
presentation to cite and discuss the technical debate over which system or systems are preferable to
the other, but it is not debatable that worldwide biological indicators do serve as the foremost and
most widely accepted monitors of sterility attainment. Since biological indicators are specially
devised standardized, calibrated devices containing spores of recognized sterilization-resistant
microorganisms, it readily becomes apparent why biological indicators are internationally recognized
as the prime system of sterility attainment and measurement. A simple analysis by the quality control
laboratory can easily detect and measure the destruction of these sterilization-resistant
microorganisms (3).

Biological indicators are used in many industrial and hospital procedures such as new
sterilization process development, product-sterilization cycle compatibility studies, sterilization
cycle validations, and systematic or routine sterilization process monitoring (4). Since the destruction
of the spores on biological indicators is the key element in determining sterility attainment, it is
critical and mandatory to have reliable, reproducible, and exacting specifications not only to assure
meaningful data but also to allow comparative studies and analyses of different, consecutive, and
varied sterilization processes. Thus, it is imperative that biological indicators should be standardized
and recognized by internationally acceptable specifications to allow for scientific, regulatory, and
legal comparisons of sterility efficacy attainment. The requirements for internationally acceptable
biological indicator standards include the following elements:

Carrier
Packaging
Labelling
Stability
Organism selection
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Microorganism Selection
Historically, many microorganisms and systems have been used as indicators of sterility attainment,
such as bacteria, yeasts, and moulds, as well as microorganisms from products and garden soil.
However, worldwide sterilization scientists have generally agreed that the use of spores of spore-
forming bacteria are more suitable than other microbial forms, because they have a proven greater
resistance and stability to environmental, chemical, and physical conditions. Perhaps, the first
applications of spores for sterility attainment came from the evolutionary work done on food
preservation and the continuous development of thermally processed canned foods. Marginally
processed foods that were spoiled or causative agents for one type of food poisoning usually
contained spore-forming bacteria, such as Clostridium sporogenes, Clostridium botulinum, and
Bacillus spp such as B. macerans. Food processing scientists have made use of many of these
organisms in their spore state to develop specific thermal processing conditions for low and high acid
and proteinaceous canned foods (3).

Similarly, hospital and industrial scientists have used a variety of systems to measure sterility
attainment. Most have come to the conclusion that spores of spore-forming bacteria are far superior to
other microbial forms for this application since they have been convinced that product sterility tests
are not satisfactory for sterility measurement. Table 1 shows a list of bacterial spore-forming
microorganisms that are internationally recognized as having spores reproducibly and reliably
resistant to specific sterilization processes. Where more than one bacterial species is listed for a
sterilization process, the first microorganism is preferred or universally accepted for sterility
monitoring. Although the genus and species of the spore former is shown, subspecies and strain
variations are as common with these microbes as with other organisms. Commonly, the sterilization
resistance factor is highly variable not only within different bacterial strains of a spore former but
also within cultures of spores of a selected bacterial species. The organisms listed in Table 1 do not
have strain or culture collection designations. This lack of culture designations from culture
depositories has been of concern by various international groups in basic agreement with the
principle of biological indicator standards. Based on experiences of some commercial biological
indicator manufacturers, spore-forming cultures obtained from recognized culture depositories
usually do not retain their sterilization process resistance through normal culture collection
maintenance.

Table 1
Biological indicator organisms
Sterilization process
Pressurized steam Bacillus stearothermophilus

Clostridium sporogenes
Bacillus macerans

Dry heat Bacillus subtilis var. niger (globigii)
Ethylene oxide Bacillus subtilis var. niger (globigii)
Formaldehyde Bacillus stearothermophilus

Bacillus subtilis
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Irradiation Bacillus pumilus
Gamma electron beam Bacillus sphaericus

Selective isolation of spores having high and reproducible resistance can be obtained. Proprietary
or commercial biological indicators must be controlled to prevent loss of resistance from mass
culture or spore crop procedures. Cultural conditions, harvesting procedures, purification of the
spores, spore storage, and other factors play important roles in the quality of the spore crops that
would be used in the manufacture of biological indicators.
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Spore Carriers
Spores of sterilization-resistant organisms are not in themselves biological indicators because the
resistance is a sum total of all components of recognized biological indicators that include the spore
carriers. Spore carriers may be of different types depending upon the specific application. Table 2
shows examples of materials and configurations that act as spore carriers. There are many variations
of these that have been used by sterilization scientists and the large matrix of these configurations
explains all too often why there is disagreement among sterilization scientists on the recognition of an
international standard for biological indicators. Other controversial complications arise from
biological indicators manufactured by direct inoculation onto components and onto simulated and
finished products. Significant resistance variations are present between spores on different carriers
and configurations. There may be good technical rationales for the use of one type of carrier over
another but the lack of a specific spore-carrier standard is open to queries concerning the reliability
of sterilization data. Selection of one carrier material and configuration for a standard is preferable to
allowances for all the types shown in Table 2, as this would offer a base unit comparison for using
other materials and configurations in sterilization processes where others are required (5).

Table 2
Spore carriers

Materials Configurations
Paper Strips

Textiles Discs
Non-woven fabrics Pellets

Glass Cylinders
Metal Product components

Plastics
Products

Simulated products
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Spore Carrier Packaging
Although naked or unpackaged spore carriers can be used for sterility monitoring, it is more common
and practical to have the spore carrier in some form of packaging. Table 3 shows a list of packaging
options in which spore carriers are used in hospital and industrial products. Each of these packaging
options is generically described and most types have variations depending upon the packaging
material specification and the package dimensions. Obviously, these varied selections of packaging
have brought a fair amount of confusion to individuals who are concerned with biological indicator
standardization. Use of these forms of packaging also has merit as it relates to sterilization of specific
products. For example, the earliest and still used packaging of spore strips consists of glassine
envelopes.

Table 3
Biological indicator packaging options

Glassine envelopes
Preformed pouches
Plastic film pouches

Metal or metal/plastic laminate pouches
Glass vials or ampoules

Self-contained BI packaged systems
Inside the packaged product

All too often, users of such biological indicators do not know or recognize that the need for
packaging the spore carrier is primarily to protect the integrity of the spore carrier after sterilizer
processing, so that it can be transferred to the laboratory and analysed for sterility attainment. Of
secondary importance in assigning resistance to a biological indicator is that which is contributed by
the spore carrier and its packaging. In the case of the spore strip in the glassine envelope, the
resistance of the biological indicator is determined by using the entire packaged spore strip and not
the naked strip or spore carrier itself.

Use of other biological indicator packaging options is beneficial, advantageous, and necessary for
other specific applications where sterility attainment must be ascertained. In wet environments such
as washer-sterilizers, immersion water-filled sterilizers, and glass-packaged liquid products, the
preferred biological indicator would be a glass vial or ampoule (2), wherein the destruction of the
spores would be dependent upon thermal energy penetration through the glass packaged liquid to
destroy the liquid-suspended spores. The resistance measurement of the glass packaged vial would be
the total resistance of the biological indicator unit to steam or thermal energy exposure when directly
placed in the chamber or suspended in the liquid phase of the packaged product itself. If the latter
system is used, it is important to recognize that the thermal insulating effects of the packaged liquid
will have a great influence on the total resistance of the biological indicator, much greater than the
simply exposed unit.

The use of self-contained biological indicator systems is becoming established as the preferred
method of routine sterility measurement because of technical and economic advantages. The self-Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



contained units obviate the need for specific laboratory trained operators and microbiologists and
offer ease of interpretation of the sterility attainment without microbiological training. The self-
contained systems can be employed in almost any thermal or steam and gaseous sterilization process
where the sterilant is dependent upon its direct penetration into the packaged product. The self-
contained system may be employed in two ways, selective placement in the sterilizer chamber or in
specially demarcated units of the packaged product (6). Since laboratory operations and technically
trained personnel are highly costly to many hospital and industrial operations, the self-contained
biological indicator system offers sterility measurement, reliability, and assurance at minimal
expense.
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Resistance Measurement
The most scientifically disputed technical issues of biological indicators and their use arise from
sterilization scientists and microbiologists as to the agreement by which method should resistance of
biological indicators be measured. All sorts of handmade units of apparatus have been historically
employed and many are technically not satisfactory because of nonreproducibility of results from one
sterilization exposure cycle to another. Examples of resistance apparatus used are circulating oil
baths, thermal death time chambers, and commercial sterilizers. Without going into specific technical
aspects of the problems associated with these types of units, there is in the US a specially devised
and controlled chamber, called a BIER vessel, containing the basic elements of control and uniformity
that reliably and reproducibly measures the sterilant resistance of biological indicators. There are
two standards for BIER vessels: steam or thermal units (7) and ethylene oxide gas units (8). The key
specification for these standardized vessels is that all physical aspects of the sterilant gases are
tightly controlled and thus yield reproducible resistance data from cycle to cycle on different batches
and styles of biological indicators. The chamber controls and recording devices yield data that allow
for direct comparisons. Although the BIER vessels may have different engineering designs, such as
size, they do yield biological indicator resistance data that are equivalent and accurate. As the BIER
units are unique analytical devices, there is no need for users of biological indicators to have them at
their direct access because they are best used by commercial biological indicator manufacturers who
can economically justify their use and operation.
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Proposed Biological Indicator Reference Standard
It is readily obvious from this presentation that industries and hospitals do require multiple types and
designs of biological indicators but there must be a mechanism by which these different biological
indicators can be compared and rated for their intrinsic resistance parameters. The establishment and
acceptance of one type of biological indicator as a standard would cause immeasurable problems for
all who must attest to the sterility of packaged products. Therefore, it is proposed that standards for
commercial biological indicators be established with labelling specifications as shown in Table 4.
Secondly, a primary biological indicator reference standard would be established similar to the
reference standards that would be employed for chemicals and other physical items. The primary
reference standard would use spores of B. stearothermophilus for steam, spores of B. subtilis for dry
heat, spores of B. subtilis var. globigii for gaseous sterilants (ethylene oxide and HCHO), and spores
of B. pumilus for irradiation processes. Table 5 shows the proposed primary reference standards for
biological indicators for different sterilization processes. The common elements for all these
biological indicators are the spore carrier and the packaging. These primary standards would serve
as the base by which all other biological indicators are compared or related. The primary reference
standards should not be used for routine sterilization operations but strictly for manufacturing of
biological indicators and possibly for sterilizer operations that require a comparative data base. The
data derived from standard biological indicators will also offer common international agreement of
sterility assessment and attainment, and uniform and fair judgment of commercially available
biological indicators by regulatory and other governmental agencies for all sterilization processes.

In summary, the multiplicity of generic biological indicators that are used in worldwide
sterilization operations shows that biological indicators will continue to be the standards for
assessment and measurement of sterility attainment. The establishment of and agreement on an
international reference standard of biological indicators for specific sterilization processes will
alleviate technical, legal, and regulatory disputes on the significance of the sterility labelling of
packaged products.

Table 4
Labelling requirements for biological indicators
Name of manufacturer Name of spore former
Trade name of product Batch or lot number
Types of monitored sterilization processes Expiry date

Other instructional and technical information
     A. USP XIX resistance
     B. D value
     C. Spore counts
     D. Cultural procedures and conditions
     E. Results interpretation
     F. Record keeping

Table 5
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Proposed primary standards for biological indicators

Steam Dry heat Ethylene oxide and
formaldehyde Irradiation

Organism B.
stearothermophilus B. subtilis B. subtilis var.

globigii B. pumilus

Carrier Paper strip Paper strip Paper strip Paper strip

Package Glassine envelope
or paper pouch

Glassine envelope
or paper pouch

Glassine envelope
or paper pouch

Glassine envelope
or paper pouch

Resistance
measurement
device

BIER steam unit Dry heat oven BIER gas unit –
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Introduction
The resistance of bacterial spores is responsible for the development of and determines many of the
sterilization processes that are being discussed in this Symposium.

Spores are resistant to many drastic physical and chemical treatments that normally kill vegetative
cells. Their most outstanding property, however, is their resistance to wet heat. The properties that
determine their heat resistance are probably also involved in determining other properties, such as
dormancy and their resistance to a variety of other adverse treatments. Heat resistance varies greatly
both between and within species, and is a function of sporulation conditions, heating environment,
and recovery conditions. The range in heat resistance of spores of all of the species of Bacillus and
Clostridium is about 100 000-fold (1). However, in each species, the process of sporulation
enhances the resistance by about 40°C above that of the mother cells of the same species (2).
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Structure and Composition
The bacterial spore is a unique biological structure resulting from a complex differentiation process
within the vegetative bacterium. The following describes briefly the structure of the spore. The
protoplast, or inner core, contains the cytoplasm, including the normally heat-labile macromolecules:
DNA, RNA, ribosomes, enzymes, and other proteins. The protoplast is surrounded by a rudimentary
germ cell wall. The next layer, the cortex, consists of peptidoglycan, a polymer of β1-4-linked amino
sugar chains, cross-linked by short peptides of alanine, D-glutamic acid, and diaminopimelic acid. It
differs from the peptidoglycan of bacterial cell walls in the nature of the cross-linking peptides, and
in having less cross-links, since over half the muramic acid residues are modified to the delta lactam
(2). The cortex is within a second cell membrane, and all this is surrounded by tough proteinaceous
coat layers (Figure 8c). Finally, in some species, loose-fitting exosporia, appendages, and protein
crystals are present.
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Heat Resistance Theories
Theories on the basis of heat resistance are numerous (3) and fall into two main classes. The first one
proposes that resistance results largely from partial dehydration of the protoplast. It is known that
drying greatly stabilizes proteins and some organisms to heat, and that the interior of the resistant
spore has a characteristic high refractility, and hence most probably a relatively low water content.

Measurements of the density (4) and refractive index (5, 6, 7) of spores, while not giving a
precise value, indicate that the water content of the protoplast must be low (<30%). Water adsorption
isotherms of isolated spore cytoplasm show that water activities (aw) of the order of 0.7-0.8 are
required to achieve this water content (8) in agreement with the value suggested by the enzyme
stabilization experiments of Warth (9, 10) (Figure 1). Such a reduction in water activity would
require high pressures (40-50 MPa) which would have to be sustained by tension in the layers
surrounding the protoplast (10).

Many workers have assumed, therefore, that partial dehydration could provide a general
explanation of heat resistance. On the other hand, spores contain a very high concentration of calcium
dipicolinate (CaDPA), together with lesser amounts of glutamate, phosphoglycerate, low molecular
weight basic proteins, and possibly other substances that might stabilize spore components. The
second group, therefore, proposes that stabilization depends on molecular rearrangements resulting
from the presence of these substances, to give a ‘general molecular stabilization’ not dependent on
partial dehydration itself. The theories are not mutually exclusive in that reduction in water implies an
increase in interactions between the spore solutes, and that specific stabilizations, involving, for
example, CaDPA may occur, in addition to a general stabilization due to dehydration.

Several pertinent examples of both classes of theory will be mentioned. For the partial
dehydration mechanism, the theories dominating the literature are based on the mechanism by which
the cortex may stabilize the spore protoplast.
(a) Cortical Theories
Four theories have been proposed:

(i)     the contractile cortex theory (11)
(ii)    the expanded cortex theory (12, 13, 14)
(iii)   the osmoregulatory cortex theory (13, 14)
(iv)   the anisotropic cortex theory (2, 10).
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Figure 1.   Heat stability of glucose 6-phosphate dehydrogenase at different aw. Symbols: ○, spore
contents; ●, intact spores. Inactivation temperature was the temperature at which the inactivation rate
constant k was 0.01 min−1. At aw about 0.7, the enzyme had similar resistance to that in the intact
spore at aw 1.00 (9).

According to the contractile cortex theory, ‘the protoplast is held dehydrated and shrunken by
contraction of the cortex, which maintains the lowered water content by mechanical pressure on the
protoplast’. There are no direct firm data to support this theory, but the polymeric chemical properties
of the cortical polymer (1), the significant relation between level of heat resistance and
diaminopimelate content as an index of the amount of cortical cross-linking (15), the calculations of
Algie (16) on cortical strength and possible internal aw, and the electron microscopic appearance
(17) are compatible with the contractile cortex theory.

In the expanded cortex theory, partial dehydration is believed to be achieved by expansion of the
cortex against the coats and application of pressure on the protoplast. The expansion is believed to
result from the electrostatic repulsion of negatively charged groups of the cortical polymer. This
repulsion is maintained by the absence of high concentrations of cross-linking cations. The evidence
claimed to support this theory and the data that do not are presented in Table 1.

Table 1
Expanded or osmoregulatory expanded cortex
Theory of Gould and Dring (13, 14, 18) and Gould (53)

Evidence not supporting:
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Evidence claimed to support:
Insufficient peptidoglycan to fill the cortical space
(13).
Coat strength adequate (11).
4M CaCl2 reduced heat resistance of coat-defective
spores by contracting cortex (13).
Sensitized spores were stabilized by 3.6M sucrose
(13, 14).
Inward expansion of cortex in electron micrographs
of disrupted spores considered to indicate that
cortex is responding to expansive forces.

Retention of heat resistance by coatless mutants
(54), coat-defective spores (55), and urea +
mercaptoethanol-treated spores (13).
Concentration of counterions in cortical
polymer more likely to contract cortex than
develop osmotic pressure (17).
Dielectric data indicate absence of free ions
(37, 38).
Biophysical state of forespore developed before
cortex and coat formation complete (27).
Calculated pressure insufficient to dehydrate
core (10).
Uniform increase in in vivo heat stability of
spore enzymes with redution in external aw (10),
i.e. no lag in response to lower aw.

Gould and Dring (13, 14, 18) further developed their ideas and proposed that the loosely cross-
linked cortical polymer, normally electrically neutralized by free positively charged counterions,
would be osmotically active (osmotic pressure >3000 kPa) and take up water, causing the cortex to
swell and partially dehydrate the protoplast. They used the same experimental evidence to support
this osmoregulatory cortical model (Table 1).

Warth (2, 10) considers that the pressure necessary to dehydrate the protoplast results from
cortical tension. He believes, the cortex is in tension in its concentric layers but in compression in the
radial direction (Figure 2). There is, however, no evidence to indicate how these forces arise during
sporulation. Three types of mechanism may contribute. During biosynthesis of the cortex, the
concentric layers (probably long glycan chains) may be contracted by cross-linking reactions between
the chains. Additionally, entropic swelling pressure may be developed in the radial direction by
hydrolysis of certain cross-links. Thirdly, synthesis and accumulation of substances, particularly
CaDPA, in the protoplast, after the cortex is partly formed, would displace some water and increase
the turgor pressure.
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Figure 2.   Forces in a model of a spore in which the pressure necessary for dehydration of the core is
maintained by swelling of the cortex, by an anisotropic cortex in which layers parallel to the surface
are in tension, while the swelling pressure is confined to the radial direction (10).

Warth (9, 10) then examined whether dehydration provided a general mechanism for stabilization
of proteins, which he considered the most important class of heat-labile compounds. It has been
known for many years that by drying, some proteins can be stabilized to heat (19). Assuming that the
spore protoplast has a low water content, can dehydration account for all the stabilization required?

Warth’s in vitro experiments with dried spore cytoplasm showed that reduction in aw dramatically
increased enzyme stability (9, 10). These results were obtained in the presence of any soluble
endogenous compounds that may stabilize enzymes. Removal of the low molecular weight compounds
had little effect on the stability of glucose 6-phosphate dehydrogenase in the higher aw region.
However, the addition of a variety of substances including the spore components CaDPA, Ca
glutamate and sulpholactate did partially protect some enzyme systems at lower aw (0.7), i.e. they
restored some of the stability that was lost on partial purification of the enzyme.

Although there are problems with in vitro examination of enzyme stability due to the inevitable
composition and structural changes that may occur during disruption of the spore, Warth’s results do
indicate that enzyme stability within the spore can be achieved simply by partial dehydration and that
a protoplast aw of not greater than 0.73 (20% water content) is required to give the stability
encountered in vivo.

In considering the low water content of the protoplast, how could such a dehydrated system be
attained and maintained? Warth (10) believes that for a spore in water with a partially dry interior,
the existence of a pressure which may be called the turgor or osmotic pressure of the spore is
required. This pressure is generated by the cortex, where the cortical peptidoglycan is assumed to be
initially polymerized under strain-free conditions. Under these conditions, potentially very highSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



swelling pressures exist and could be directed to compression of the interior, and fixed by cross-
linking the glycan chains so as to bear the tension. In this situation, maintenance of the tension is
possible since each successive layer of the cortex must transmit its pressure by compression of those
beneath it. Warth’s description of the system is not untenable, and certainly offers more of an answer
than other dehydration models involving the cortex.
(b) General Molecular Stabilization Schemes
A number of the recent general molecular stabilization theories (Table 2) stem from the presence of
large amounts of the spore-specific compound dipicolinic acid (DPA). Powell and Strange (20),
Powell (21), and later Tang et al. (22) and Grecz et al. (23, 24) suggested that stabilization resulted
from a chelate-cement matrix brought about by calcium ions chelating DPA, resulting in a
waterproofing effect that trapped and protected the essential labile components. Bradbury et al. (25)
suggested a solid support system of CaDPA (see below).

Table 2
Theories on mechanisms of heat resistance
Early theories Ref.
   Water-shielded protoplast Cohn (56), Dyrmont (19)
   Low water content Lewith (57)
   Uncoagulatable state Esmarch (58)
   Colloidal shrinkage Daranyi (59)

Partial dehydration of protoplast theories (Cortex theories)
   Contractile cortex Lewis, Snell, Burr (11)
   Expanded cortex Alderton, Snell (12)

Gould, Dring (13, 14)
   Osmoregulatory expanded cortex Gould, Dring (13, 14, 18)
   Anisotropic swollen cortex Warth (2)
   Reverse osmosis by centripetal cortex synthesis Algie (16)

General Molecular Stabilization Theories
Protein stabilization:
   Enzymes bound to protect active groups Virtanen, Pulkki (60)
   Masking of polar groups, ‘bound protein’ Waldham, Halvorson (61)
   Enzyme stabilization Sadoff (62)
   Insoluble thio-gel theory Black, Gerhardt (31)

Chelation theories:
   Waterproofed system from CaDPA incorporation Powell (20, 21)
   Chelate cemented matrix Tang et al. (22)

Grecz et al. (23, 24)

Shrunken protoplast encased in structurally contracted cortex Marshall, Murrell (8)
Murrell (27, 28)
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Solid support CaDPA immobilization Bradbury et al. (25)

In 1970, Marshall and Murrell (8) pointed out that after stage IV of spore formation, the protoplast
is probably reduced to its minimum volume by the effect of metal ions or other gelation co-molecules
that are being concentrated at this stage. This would result in exclusion of water. While the protoplast
is in this minimum volume state, the cortex is built around it in a structurally contracted and stable
cross-linked manner. Some residual water in the protoplast will possibly become chemically
complexed with endogenous solutes such as DPA.

In subsequent studies concerned with the biochemical development of UV and heat resistance,
electron microscopy of the developing spores revealed that the protoplast volume was actually
halved at about this time (26). This reduction in volume was associated with marked changes in the
cytological appearance of the DNA, UV resistance, the type of DNA photoproducts, and other
biochemical events (27).

This volume reduction and associated changes have been likened by Murrell (28) to the
phenomenon of synaeresis, proposed initially by Graham (29). The phenomenon may be described in
the following way. ‘Under certain circumstances the particles of a gel may undergo a process of
rearrangement or reorientation so as to produce a more stable system, a process which is
accompanied by the separation or expulsion of a certain amount of fluid’ (30). This description does
not imply a denaturation process, only a reduction in protoplast volume and hence molecular
reordering, probably in the presence of various cations and basic proteins.

The observation of these changes in the protoplast has been followed by several studies that
include much of our recent research which is aimed at understanding the biophysical state of the
protoplast and its relation to heat resistance.
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Biophysical State of the Spore Protoplast
(a) Water State of Spores
This is of critical importance to a discussion on heat resistance, as the water content and water
activity of the system can have a big influence on the heat resistance of spores and proteins. However,
it is very difficult to describe quantitatively in terms of water properties or to state what is happening
in the spore as it is not experimentally possible to determine the amount of water or its state in the
various compartments of the spore (Figure 3). Although certain evidence indicates that the water
content of the protoplast is probably low, spores are permeable to water (8, 31, 32, 33) and have a
relatively high water content on a wet weight per volume basis (57-86% w/v) (8, 31). This suggests
that the protoplast contains moisture. Permeability studies with labelled water indicate that water
molecules virtually permeate all parts of the spore (8, 31). Further, studies on the heat resistance of
spores equilibrated to various equilibrium humidities indicate that water can move in and out of
spore protoplasts affecting their heat resistance (9, 34, 35) (Figure 1).

Figure 3.   Diagramatic section of a mature spore indicating the various cytological compartments of
the spore, their proportion of the whole spore, density, and permeability to water. Data from 4, 14, 8,
and Murrell (unpublished).

These studies, however, do not rule out the idea that the amount of water in the protoplast region
was reduced relative to the outer regions, as proposed by many of the theories. If there is some
moisture in the protoplast and the amount of this water affects heat resistance, it would seem that there
are two extreme states that can exist in the protoplast. At one extreme, it could be a moist gel of
reduced aw, and at the other, an insoluble macromolecular matrix containing a small amount of
absorbed but relatively free water (high aw). In the latter case, resistance would depend on the heat
stability of the molecular matrix.

Since water can move freely in and out of the spore, Bradbury et al. (25) assumed that it was
reasonable to extrapolate that the water bound by the different spore fractions, i.e. the coat, cortex,
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and protoplast, will have similar molecular mobility and sorption properties to that absorbed by the
fractions isolated from disrupted spores. Based on this assumption, proton NMR studies on water
mobility in spores and isolated spore fractions reveal that the water in the intact spore protoplast
appears more mobile than that absorbed to the outer integument fractions (25). That is, the transverse
relaxation rate (1/T2) at a particular relative humidity was consistently less for intact spores than for
isolated coat and coat + cortex preparations (25) (Figure 4). (The lower the relaxation rate, the more
mobile is the water.) The molecular mobility of the water in the protoplast, however, is nowhere near
as great as that in free water. Further, water sorption isotherms show that at particular relative
humidities the isolated protoplast material absorbs as much as, and often more, water than does the
isolated coat and cortex fractions (36). These observations have been interpreted as disproving the
theory that the protoplast is drier than the outer regions of the spore (25).

Figure 4.   Graph of water relaxation rate (1/T2T) for spores and spore components equilibrated at aw
of 0.98, against the % Mn: spores (●), coat (■), coat + cortex (X). The % Mn affects the 1/T2T value;
however, if the values for the spores or their components are compared at the same Mn content, the
value for intact spores is less than that of its components at all Mn contents and aw, indicating that the
water in the spore is more mobile than that absorbed to the isolated fractions (25).

If there is a certain amount of water in the protoplast and even though it may be quite small in
amount, what then is the molecular mobility, not necessarily solution mobility, of the low molecularSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



weight solutes and of the side chains and various hydrophilic groups of the nucleic acid and protein
polymers? Are they free to rotate as in a solution and can the proteins and nucleic acids uncoil and
denature when heated in solution?
(b) State of Low Molecular Weight Solutes and Macromolecules in the Spore Protoplast
Dielectric studies of Carstensen et al. (37, 38) measuring the electrical conductivity at high
frequencies suggest that ions and small solutes within the spore are immobilized, but rapidly become
mobile upon initiation of germination. Electron probe studies of freeze-sectioned spores reveal that
most of the Ca, Mg, and Mn is located in the protoplast (Figure 5)(39). Photoproduct studies (40), β-
attenuation data (41), and isolated forespore analyses (42, 43) indicate that most of the DPA is also
present in the protoplast. Hence, the concentration of these solutes on a spore dry weight basis (2-3%
Ca2+, about 10% DPA) will be very high in the protoplast, i.e. about 6% Ca2+ and 30% DPA,
insoluble, or in a supersaturated state.

The picture emerging from these results is that the constituents of the protoplast are in a highly
concentrated medium in an insoluble, immobilized state, apparently with some ‘free’, ‘mobile’ water
present. NMR studies on DNA and CaDPA mobility and the interaction of these constituents were,
therefore, undertaken using radioactive-labelled components. A series of model systems were set up
to try and evaluate the effect of various spore components such as DPA, Ca, and Mg on the nucleic
acids DNA, RNA, and tRNA. Several biophysical techniques were used including 31P-NMR, melting
analysis (DNA strand separation), nucleic acid synthesis, X-ray analysis, UV photoproducts, UV
spectroscopy, and fluorescent spectroscopy. Briefly, the conclusions from these experiments were that
both DPA and its major chelate form, CaDPA, affected the mobility and stability of every nucleic acid
component tested. For example, if DNA is hydrated to several aw and is examined by 31P-NMR, the
normal T1 (the spin lattice relaxation time, i.e. the time required for the molecules’ normal motion to
go through one phase or cycle) is approx. 375 ms, down to an aw of 0.63. Below this hydration level,
DNA undergoes a phase transition stabilizing at aw 0.38 and a T1 of 1300 ms (Figure 6). This change
in T1 is consistent with the change from the normal DNA B state to the very tightly coiled A state. In
comparison, if DPA or CaDPA is combined with DNA in solution, the T1 is lengthened to 1400 ms.
Hence, the interaction of DPA/CaDPA with DNA induces a similar effect to that of reducing the
normal torsional motion of the molecule, so that it appears to be in the A state. At higher
concentrations of DPA or CaDPA, even at high aw (0.98), no motion of the DNA is observed,
consistent with the interpretation of the entire polynucleotide backbone being ‘frozen’ (44).
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Figure 5.   Elemental distributions in a cryosectioned wild-type B. cereus T spore. (a) Unstained
scanning transmission electron microscopy (STEM) image, using dark-field divided by bright-field
mode. The core (light area) and outer cortex/coat layer are easily discerned. (b) Silicon map. (c)
Calcium map. (d) Phosphorus map. (e) Magnesium map. (f) Manganese map. (g) Sulphur map. (h)
Continuum map. Note that the divalent cations, calcium, magnesium, and manganese are confined to
the core region, along with most of the phosphorus. Silicon is strongly concentrated in the cortex/coat,
whereas sulphur is distributed over the entire spore. The continuum map is featureless, indicating that
the patterns observed in the other maps are not artifacts related to mass differences in the section
(39). Bar indicates 500 nm.

Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



Figure 6.   Effect of DPA and CaDPA on the 31PT1 (molecular reorientation) motion of salmon sperm
DNA at various equilibrium relative humidities. 300 mg of salmon sperm DNA (Calbiochem) was
hydrated to the desired aw by equilibration in a sealed evacuated desiccator using H2SO4/H20
solutions. All solutions were degassed to remove molecular oxygen. Equilibration time was
minimally 10 days. All aw were checked after analysis by drying the samples and correlating water
content to aw by a water sorption curve. The error in aw was less than 2%. Cornell and Lindsay (44).
The symbols (●, ■, ◆) represent experimental points for the observed T1 of DNA in the presence of
DPA or CaDPA at the indicated equilibrium relative humidities.

The presence of DPA/CaDPA also increases the melting temperature of DNA by over 20°C (45).
At very high ratios of DPA: base pair, the polynucleotide could not be melted. Additionally, DPA and
CaDPA inhibit RNA synthesis (45).

Examination of UV-induced photoproducts from sporulating cells revealed that during irradiation
of spores of B. cereus T DPA− mutants grown in the presence of exogenous DPA, a photoproduct was
formed that on isolation and characterization by mass spectroscopy and NMR was tentatively
identified as a combination of DPA and a thymine residue (Figure 7) (46). This photoadduct indicates
the very close proximity of DPA to DNA in the spore as also indicated by earlier experiments where
the presence of DPA was shown to affect UV resistance and the amount and type of photoproducts
produced, presumably by the transfer of photochemical energy to the polynucleotide (40, 47).
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Figure 7.   Photoproducts and thymine-DPA adduct formed during UV-irradiation (254 nm) of spores
of B. cereus T HW1 DPA− mutant grown with exogenous DPA (100 μg/mL) during sporulation.
Lindsay and Murrell (46).

The question now arises, how can the interaction of DPA/CaDPA with nucleic acids be interpreted
at the molecular level. The DPA molecule has an aromatic planar structure similar to other well-
known intercalating substances such as the acridine dyes, for example ethidium bromide. The
interaction of DPA with nucleic acids is therefore likely to be similar to that of an acridine dye or an
antibiotic with planar ring structure binding to nucleic acids.

Our interpretation, therefore, of the in vitro and in vivo results is that during the sporulation
process, which is analogous to a biochemical shutdown, DPA/CaDPA interacts with available nucleic
acids effectively immobilizing their motion, inhibiting their metabolic roles, and increasing their
stability. More importantly, the process of drug/dye and DPA/CaDPA binding involves hydrophobic
forces (48). Thus, the incorporation of DPA in the developing forespore and its interaction with DNA
could displace water from around the DNA and result in some dehydration of the protoplast.Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



Furthermore, the amount of DPA/CaDPA far outweighs the amount of nucleic acids within the
protoplast. Therefore, it would not be unreasonable to assume that any DPA or CaDPA not complexed
with nucleic acids could aid in the stabilization of enzymes and proteins, either specifically or
nonspecifically.

As a result of these studies, an understanding emerges of what is happening during spore formation
and development of the biophysical state of the resistant spore.
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Formation and Development of the Biophysical State of the
Protoplast of the Resistant Spore
Sporulation is a long, slow cellular differentiation process. Normal sporulation takes some 6-8 hours
and is arbitrarily divided into seven stages (1). Stabilization of the forespore does not commence
until stage IV in which a considerable number of biochemical changes occur. Cytologically, during
this period there is a marked change in the appearance of the DNA; from the electron-transparent state
of the vegetative cell, it becomes more fibrous and takes up a peripheral location in the forespore
(Figure 8). Almost at the same time as the DNA changes occur, the volume of the protoplast (Figure
9) decreases by more than one-half (26). This major early reduction in protoplast volume occurs just
before cortex synthesis and DPA formation. Nothing is known about the physiological mechanism
responsible, but several explanations seem possible. First, a redistribution of cations between the
protoplast and the surrounding ‘exocellular’ space between the two forespore membranes could
reduce the volume by plasmolysis. Secondly, the germ cell wall may have an ability to contract.
Relatively little pressure is required to remove the major part of the water as small changes in aw are
involved. Thirdly, this reduction in protoplast volume has been suggested as occurring by molecular
reordering with the exclusion of water, a process of synaeresis (3, 27, 28). This process may result
from the presence of various cations, and perhaps basic proteins (50, 51).
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Figure 8.   Electron micrographs of three stages in the development of the resistant spore of B. cereus.
(a) Stage IV showing the DNA undergoing rearrangement and moving into a peripheral position (dna).
The cytoplasm shows ribosomes (r) and heterogeneous appearance. (b) A spore at stage V with a
homogeneous cytoplasm. The DNA is barely distinguishable. (c) A near mature spore, showing fully
developed cortex (cx) and coats (c), still in the mother cell. p, protoplast; ex, exosporium.
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Figure 9.   Reduction in protoplast volume in relation to other sporulation events in B. cereus T.
Based on the data of Baillie et al. (49) and unpublished studies of Ohye, Warth, and Murrell (26).
Refractile forespore counts (RFS), DPA, stages of sporulation, and photoproducts were determined
as described previously (47, 49). The protoplast and cortex volumes of developing spores in the
culture were obtained by summing the products of the proportion of sporulation stages in each sample
(from electron micrographs) times the average protoplast or cortex volume of each stage. For
example, at 6 h:

Avg forespore protoplast vol
(μm3)

Relative protoplast vol in
culture (μm3)

10.8% cells with vegetative
DNA 0.497 5.4

33.8% cells with transition
DNA 0.402 13.6

55.4% stage V 0.255 14.1
100.0 33.1

Electron micrographs only of medial longitudinal sections were used for measurements. At least 60
suitable cell sections were examined in each sample. Cortex volume was the difference between the
volumes enclosed within the inner and outer forespore membranes. Volumes were calculated by using
the formula for a prolate spheroid (27).

The reduction in protoplast volume is associated with several events, over a hundredfold increase
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in cellular calcium content, DPA accumulation, and the formation of the cortex. There are difficulties
in determining the exact relationship in time of all these events (27). The beginning of the reduction
appears to precede Ca2+ uptake and DPA accumulation, and to be associated more with changes in the
appearance of the DNA (27) and basic protein formation (50, 51).

Our interpretation is that from stage IV on, calcium and DPA specifically bind with available
nucleic acids (giving this spore molecule a specific role) resulting in the stabilization of the nucleic
acids, and presumably forcing the removal of water from around these molecules and out of the
protoplast by hydrophobic reaction. The appearance of the forespore protoplast changes, becoming
homogeneous, obscuring the DNA and ribosomes, before even the cortex and coats are complete
(Figure 8b). It is around this transformed spore protoplast that the cortical peptidoglycan polymer is
formed. Because this polymer, with an excess of negatively charged groups, is formed within the
mother cell with presumably a relatively neutral cytoplasmic pH, and in the presence of the
accumulating cations such as Ca2+, Mg2+, Mn2+, Fe2+, it can be expected to be laid down in a
structurally contracted and stable cross-linked state. The coats will be finally completed around the
cortex and in this state protecting it from lytic enzymes released by lysing mother cells.

During stage IV and V, there is a gradual increase in resistance to octanol and other solvents, and
heat resistance (52), and stabilization of enzymes to heat (Figure 10)(10). The final level of heat
resistance is not achieved until the cortex and coats are fully developed.

Some of the residual water in the protoplast may become chemically complexed with metal
chelates, protein, and polysaccharide polymer (2, 8). The protoplast will now be unable to take up
water and swell as it is mechanically restricted by the cortex and coats. Possibly only a small amount
of free solutes or polymer groups capable of exerting an osmotic pressure are present in the mature
spore protoplast.

The water content of the protoplast in the mature resting spore will be determined by the amount
of reduction in protoplast volume that occurs, and by the degree of contraction or closeness of fit of
the contracted cortical envelope and perhaps coats. The water content of the protoplast, together with
the solid support system generated by the interaction of the DPA/CaDPA and the DNA, may determine
the degree of heat resistance.
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Figure 10.   Development of heat stabilization of spore enzymes in relation to cortex and DPA
synthesis during spore formation in Bacillus cereus. Symbols: □, muramiclactam; +, DPA; ●, phase-
grey + refractile spores; ○, phase-white + refractile spores; 0, 6, 7, 8, 9, heated for 10 min at 25°,
60°, 70°, 80°, and 90°C respectively (10).
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Interpretation of the Molecular Mechanisms Involved in Resistance
Studies of the interaction of DPA and CaDPA with the various polynucleotide species with
immobilization of these molecules suggest the type of molecular arrangement that will be present in
the shrunken spore protoplast encased within the cortex and protected by the coats.

It is proposed that the essential labile macromolecules in the protoplast are heat-stabilized by the
formation of noncovalent electrostatic and possibly hydrogen bond interactions with calcium
dipicolinate, that acts as a ‘solid support’ in a similar fashion to that used to immobilize and stabilize
enzymes in a charged polymer matrix, such as a concentrated polymethacrylic acid gel (25). Other
small molecules, such as glutamic acid, sulpholactic acid, and 3-phosphoglyceric acid, when they
occur in the spore protoplast in significant quantities, may play a similar role as their calcium salts,
particularly in the case of DPA-deficient mutant spores that retain some heat resistance.

The stabilizing noncovalent bonds between the solid support and the macromolecule must be
broken to denature the macromolecule and therefore, as compared with the native macromolecule in
dilute solution, additional energy must be put into the system by heating it to a higher temperature to
allow the molecules to uncoil and denature.
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Conclusions
It is believed that the resistance of the spore is developed and obtained by a number of biophysical
changes that occur during sporulation. These involve:

(i)     a reduction in the protoplast volume by over 50%
(ii)    a reordering of the macromolecules
(iii)   encasement of the reduced protoplast within contracturally synthesized cortex and the coat
(iv)   concentration to a high degree of solutes with a concomitant reduction in water content in the

protoplast
(v)    maintenance of a lowered water content by development of pressure in the cortex
(vi)   development of a solid support system of CaDPA with specific interaction of DPA/CaDPA

with nucleic acids and possibly proteins
(vii)  constraint of macromolecular motions which lead to denaturation.
The biophysical changes certainly result in considerable stabilization, but whether their

contribution to stability is greater or less than that resulting from the associated partial dehydration
may not be answerable. Partial dehydration adequately stabilizes proteins in vitro, but better
evidence of the degree of dehydration of the protoplast in the intact spore, when immersed in water, is
required to substantiate the partial dehydration theory.
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Sterility Monitoring – Sterility Testing
David J. McKay and Maija Tebecis

National Biological Standards Laboratory
Canberra, Australian Capital Territory, Australia

The process of sterility assurance covers not only the product, but also the whole of the manufacturing
and testing process. Sterility assurance begins with controls and tests on raw materials and
components, and covers the manufacturing and sterilization process through to control of stocks and
sterility tests on the finished product. Aspects of the sterility test and considerations of its role, its
limitations, potential for improvement, and possible future developments are discussed.

In describing some of the experiences in our own test laboratory, it is important to remember that
the National Biological Standards Laboratory (NBSL) is the national control authority, and most tests
are carried out on products already marketed.

The major problem is that sterility testing does not prove that the product is sterile. This follows
from basic considerations of sampling statistics from which no amount of testing can prove that a
batch of product is sterile (Table 1). Therefore, the objective of the test and what can be done to
obtain the maximum value from the test are major considerations.

Table 1
Probability of acceptance of batches with different contamination rates

Sample size % Contaminated
0.1 1 5 10

10 0.99 0.91 0.6 0.34
20 0.98 0.82 0.35 0.11
50 0.95 0.61 0.08 0.005

100 0.91 0.37 0.01 –

Whereas the sterility test may not be able to prove that a batch is sterile, it does detect grossly
contaminated products. It is the last chance, the manufacturer has to prevent the release of a batch of a
product where there has been a major breakdown in the normal manufacturing process. Such
problems should be rare, but in our experience they do happen. Since 1975, we have encountered ten
examples which I would classify as heavy contamination, where properly conducted sterility testsSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



would have prevented the release of the products. It should be remembered that if NBSL finds a
contaminated product, there are already two problems; not only a failure of the sterilizing process, but
also the manufacturer’s sterility test has failed.

Although the ten instances are a small percentage of 2500 samples tested, they may represent the
tip of a substantial iceberg, since the Laboratory tests only a small fraction of batches that are
released to the market. It is interesting to look at some examples.

In August 1981, we began a programme of testing ‘sterile’ wound dressings. It was immediately
obvious, there was a major problem. In the initial survey, we tested 25 batches of imported dressings
and found that 18 of them were nonsterile. In most cases, all items in the sample were contaminated,
usually with a rich variety of microorganisms. Clostridia were isolated from about two-thirds of the
contaminated samples, the most common isolate being Clostridium perfringens. In one sample, we
found four species of clostridia, two types of enterobacter, as well as E. coli and Yersinia sp. These
findings were substantially confirmed by extensive studies in England (1). We also tested a batch of
needles that were part of the kit supplied with a vaccine. Of the 30 needles tested, 20 were
contaminated. In both examples, the sterilization process had clearly been defective, and the
importers, distributors, and users of the products had accepted them as sterile without further testing.
The consequences of this unquestioned acceptance were potentially serious.

Unquestioned acceptance of products without a test for sterility can obviously result in major
problems. Sterility testing is an essential part of quality control. However, even if a sterility test is
carried out, it may also fail to detect problems, unless there is careful attention to detail, in particular,
validation of test media and methods. For example, on one occasion a batch of a liquid preparation
was found to be heavily contaminated (59 out of 60 containers showed growth of microorganisms)
and on another occasion a batch of kidney dialysis units was heavily contaminated with a variety of
moulds. In each case, the product was from a reputable source and had passed the manufacturer’s
sterility test. NBSL results were disputed. In the first example, the results were accepted when it
became clear that inadequate steps had been taken by the manufacturer to inactivate preservatives and
to demonstrate that the media were capable of supporting the growth of microorganisms in the
presence of the product. The example of the dialysis units is also interesting. The manufacturer had
tested the units by flushing media through the device and incubating the eluate, evidently expecting
that any organisms present would be easily washed off surfaces to which they were attached. At
NBSL, testing was carried out both by the flushing method and by filling the device with medium and
incubating the filled unit. We detected contaminants only when the devices were filled with media and
incubated. Flushing clearly has limitations in circumstances where microorganisms may be firmly
attached to surfaces.

Some of the heavily contaminated products mentioned in these examples had obviously not been
tested for sterility. In other cases, tests had been carried out, but the methods had been inadequate.
Our results show that the test plays an important role, and attention must be given to the adequacy of
the test methods. Heavy contamination is uncommon but relatively simple to detect. Much more
difficult to pin down are intermittent, low-level contaminations that may arise from time to time. To
detect low-level contaminations, it is essential that the test be as sensitive as possible and that the
number of false positives be kept low. If this is not done, true positives will not be detected against
high background of false positive tests.

I would like to consider the problem of the sensitivity of the test and possible ways of increasingSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



it. Sensitivity could be increased by testing larger quantities of the product, but this would result in
increased costs. It would be preferable if sensitivity could be improved without increasing either the
complexity, or the cost of the tests.

Some of our results are reviewed, identifying some of the problems with existing tests. Table 2
shows the number of positive cultures in different medium/temperature combinations. At NBSL,
standard media, SCD at 23°C and thioglycollate at 32°C are used. However, we also use an
additional SCD medium at 37°C. The results shown in Table 2 do not include the results from tests on
wound dressings, as the variety and number of organisms found was generally not typical of
pharmaceuticals and devices. There were so many isolates that not all were characterized. The
numbers involved were substantially greater than the total of isolates from all other tests in the past
seven years and, if included, would obscure the results for pharmaceuticals and devices.

Samples were divided equally between the various media, so that similar numbers of positives
could be expected if the media were of equal efficiency. The overall difference between SCD at 37°C
and 23°C did not reach statistical significance. The numbers of bacteria were similar, but it is clear
that the lower temperature favours growth of moulds. The difference between the numbers of moulds
at 23°C and 37°C is highly significant (P < 0.001). The most obvious problem revealed by these
results is the poor performance of the thioglycollate medium, that detected only one-third the expected
number of positive results. The difference is highly significant (P < 0.001). This failing has an
obvious effect on the efficiency of the test. In a conventional test, the sample will be divided equally
between SCD 23°C and thioglycollate at 32°C. Based on the proportions in Table 2, the test detects
only 65% of the possible contaminants.

Table 2
Sterility test isolates
Medium Moulds Bacteria Unknown Total
SCD 23°C 32 57 8 97
Thioglycollate 32°C 2 14 8 29
SCD 37°C 5 64 10 79

The efficiency is further reduced if incubation is limited to seven days, as it has been shown that
about one-quarter of all contaminants show delayed growth (2). It can be predicted that a test based
on the two media and a seven-day incubation period will detect less than half of all contaminants.
This is obviously an unsatisfactory situation.

To identify the problem is simple, but to provide a solution is not so easy. Fluid thioglycollate
medium has been used for many years and it was generally adopted as a sterility test medium
following work carried out by Pittman (3). However, it has long been known that thioglycollate may
be inhibitory (4, 5). An improved medium, dithionate-thioglycollate (HS-T) medium, was developed
by Clausen (6) and was proposed as a replacement for thioglycollate medium. The apparent
superiority of the medium was confirmed by others (7). Thioglycollate medium with haemin and
vitamin K has also been recommended (8).

To assess the value of these media for sterility testing, we have used them in parallel with regular
media for periods of up to one year. Results of these trials are given in Table 3.Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



Table 3
Contaminants isolated in different media

Regular Experimental

1976-1977 SCD 37°C
43

SCD 23°C
32

THIO 32°C
10

HS-T 32°C
8

1978-1979 SCD 37°C
9

SCD 23°C
5

THIO 32°C
5

Enriched THIO 32°C
1

Although the number of positive results is small, neither of the alternative media shows any
obvious advantages over thioglycollate medium, and all were markedly less efficient than SCD in
sterility tests. These results are in conflict with the earlier reports (3, 6) of the superiority of HS-T
medium. However, there is one major difference between the studies. In the earlier studies, media
were inoculated with a variety of microorganisms. The inocula were small, but the organisms were
from fresh cultures. By contrast, organisms surviving in pharmaceuticals could be debilitated by age,
exposure to preservatives or to sublethal sterilization processes. A medium which is mildly inhibitory
may permit the growth of healthy microorganisms, but may not favour resuscitation of damaged
microbes (9, 10). Our own results were obtained during routine sterility tests, which may account for
the differences between our results and the published reports on the efficacy of the HS-T medium.

Thioglycollate medium is not ideal for sterility testing and alternatives are needed. However,
alternatives will need to be evaluated in routine test situations. This will be a very slow procedure.
We are at present evaluating SCD incubated at 32°C in the hope that this will be as effective as SCD
at 23°C and 37°C. We also plan to characterize further the bacteria isolated at the different
temperatures. It is our hope that tests can be simplified by using a single incubation temperature.
However, the major problem of the thioglycollate medium remains.

Finally, I would like to consider potential alternatives to the sterility test. While the test has its
value, it also has limitations. Control over the sterilization processes is a more important factor than
end product testing. There is some incongruity in the use of steam or gas sterilized items to test the
sterility of other items sterilized by similar processes.

NBSL has for many years accepted the release of radiation-sterilized goods without sterility
testing (11). This was considered to be justified by the reliability of the process, the ability to
measure accurately the absorbed dose, and the relative lack of problems with the penetration of the
sterilizing agent. In addition, there is often physical separation between the manufacturing plant and
the sterilizing facility, that reduces the chance of mix-ups between sterilized and unsterile stocks.

In the past, there was lack of means to obtain accurate and reliable measurements of delivered
sterilizing dose for sterilizing methods other than radiation. However, there are now available
reliable multichannel recording thermometers that can not only record temperatures at many points,
but can also calculate the total heat exposure at 121°C (F0). The delivered sterilizing dose for heat
sterilization can now be measured with an accuracy equivalent to that of radiation sterilization.

There seems no reason why the principles accepted for radiation cannot be applied to other
methods of sterilization. All that should be required is knowledge of the bioburden, accurate and
reliable measurements of the delivered sterilizing dose, integrity of the containers, and proper stock
control to prevent mix-ups.
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There may also be alternative procedures such as chemical or biological monitors. Chemical
indicators are not yet widely accepted, but there may be systems which could be used as an adjunct to
physical monitoring of steam sterilization that, with suitable validation, may be able to substitute for
sterility testing.

Biological indicators have been suggested as a means for controlling sterilizing cycles in a way
which would permit the deletion of finished product sterility testing. However, there have been
complaints to NBSL that some indicators have been of variable resistance. In our own experience,
some commercial B. stearothermophilus indicators were killed by exposure for 3 minutes at 121°C
and some gave no growth even when unheated. At the other extreme, some indicators survived
exposure to F0 values of 18.

Nevertheless, biological indicators have their value. This is recognized in the Australian Code of
GMP Appendix C – Guidelines on Tests for Sterility. The Code permits a reduction in the sterility
test sample size, where terminal sterilization is monitored with biological indicators. However, the
indicators must be used in the manner specified in the Code, and the labelling on the indicators must
specify storage conditions, expiry dates, and performance characteristics.

Product release based on control of the parameters of the sterilization cycle has obvious
advantages. It is my view, that parametric release used in radiation process control can be extended
to other methods of sterilization. However, each individual product and process will need to be
carefully assessed on its merits. There will be no general or early acceptance of the deletion of the
sterility test, even for products terminally sterilized.

By far, the most common method of sterilization is filtration and aseptic filling. A check of
products tested for sterility by NBSL since 1975 has shown that approximately 70% of products had
been aseptically filled. Finished product sterility testing will remain mandatory for these products.
While there is a continuing need for the sterility test, our work will be in part directed towards
modifying the test to improve its effectiveness. There is scope for substantial improvement and
simplification.

Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



References
  1. Whitehead JEM. Details of contaminated dressings report. The Pharmaceutical Journal 1982,

710.
  2. McKay DJ. (1980). Australian Regulatory Viewpoint – Sterility Testing. In Sterilization of

Medical Products, Gaughran ERL, Morrissey RF, Eds., Multiscience Publications Ltd, Montreal,
Canada 1981, Vol. II, 306-11.

  3. Pittman M. A study of Fluid Thioglycollate Medium for the sterility test. J Bacteriol 1946, 51, 19.
  4. Mossel DAA, Beerens H. Studies on the inhibitory properties of Sodium Thioglycollate on the

germination of wet spores of clostridia. J Hyg (Camb) 1968, 66, 269.
  5. Doyle JE, Merhof WH, Ernst RR. Limitations of Thioglycollate Broth as a Sterility Test Medium

for materials exposed to gaseous ethylene oxide. Appl Microbiol 1968, 16, 1762.
  6. Clausen G, Aasgaard NB, Solberg O. Dithionite-Thioglycollate Broth (HS-T Broth). A new

control medium for microbial-contamination tests of medical products. Ann Microbiol (Inst.
Pasteur) 1973, 124B, 205-16.

  7. Mohamed AF Abdou. Comparative study of seven media for sterility testing. J Pharm Sci 1974,
63, 23.

  8. Holderman LV. Personal Communication, 1978.
  9. Tomlins RI, and Ordal ZJ. Thermal injury and inactivation in vegetative bacteria. In inhibition

and Inactivation of Vegetative Microbes, Skinner FA, Hugo WB, Eds., Academic Press 1976.
10. Van Schothorst M. Resuscitation of injured bacteria in foods. In Inhibition and Inactivation of

Vegetative Microbes op. cit.
11. Code of Good Manufacturing Practice for Therapeutic Goods, National Biological Standards

Laboratory, 1971.

Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



Good Manufacturing Practices – Overview
John E.W. Nygard

American Hospital Supply Corporation
Evanston, Illinois, USA

Within the past decade, codes of Good Manufacturing Practices (GMP) for the manufacture of
medical products have been written and implemented around the globe. These GMPs share the basic
commitment to serve as industry standards, covering critical aspects in the manufacture, distribution
and control of health care goods. Many of these GMPs apply directly or indirectly to the manufacture
of sterile medical products, the primary focus of this overview.

There are differences in regulatory approaches to GMPs between Australia and the US, and even
between the federal and the many state and local governments, as they evaluate and regulate
manufacturers. Some regulators license and closely observe manufacturing operations, others require
licensing or registration using occasional auditing of operations to assure compliance, and yet a third
group requires only tacit compliance, where regulatory intervention occurs only if problems arise.
The controlling GMP documents, whether the Code of Good Manufacturing Practice for
Therapeutic Goods of the Commonwealth Department of Health or the Good Manufacturing
Practice for Medical Devices of the US Food and Drug Administration, are intended to help assure
that there are minimal product problems in the marketplace. What is desired by industry regulators
worldwide is objective criteria upon which to evaluate and/or control the complex processes in the
manufacture and delivery of safe and effective sterile medical goods.

It is unnecessary to review in detail the GMP publications worldwide which relate completely, or
in part, to the manufacture of sterile medical products, because of similarities in the topics covered. It
is also impossible to accurately evaluate the real or probable operating effectiveness of GMP
documents that are currently in effect or proposed that deal with sterile medical products. Such
judgements ultimately depend on who you are, whether from government, industry, or academia It is,
however, appropriate to review some of the common subjects or concerns covered in these GMP
documents. It is also timely to review a new approach to voluntary industry compliance in the United
States involving industry guidelines developed by input from industry, academia, and government,
relating to the sterilization of medical devices. This concept will hopefully find increasing support
and acceptance by regulating bodies within the United States.

In the US, the writing of all official federal GMP documents is accomplished internally within the
US Food and Drug Administration with little if any input from industry or academia The document
when completed is published in the Federal Register as a proposed regulation open for comment by
industry and academia At this time there is usually little chance for making any major changes in the
philosophy or content of the document Because the FDA has to develop GMPs internally without
outside input, the FDA has sometimes chosen to develop tentative documents such as the GMP for
large volume parenteral solutions, which have not been, or may never be, proposed for official
adoption. A reason for the FDA choosing this approach may be the result of a general consensus that
the proposed GMP might not work as well as intended when applied to actual manufacturing
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operations, and by proposing such a tentative document, it allows a longer period for evaluation of
content and need. Such tentative GMPs, however, may continue to serve as unofficial guidelines even
though not officially adopted as a regulation. One can surmise that GMPs generated solely within a
government regulatory body could result in a document that is difficult if not impossible for industry
to follow. This may not be the result of any overt plan by the regulators to confuse or confound
industry, but it may be because there is a genuine lack of knowledge and experience in the specifics
and economics of industrial processes or controls on the part of those who compose the GMP.

The most effective government generated GMPs have been broad and general in their scope.
These are the umbrella GMPs that cover the requirements of an entire group of products, such as
medical devices and which are purposely not very detailed in the specifics of equipment, processes,
and controls. Within the US the FDA has several umbrella GMP regulations in effect including the
current ‘Good Manufacturing Practice for the Manufacture, Packaging, Storage and Installation
of Medical Devices’. This document encompasses all aspects of medical device manufacturing. In
this umbrella-type regulation the FDA did not include what it has repeatedly voices as necessary, the
specifics for sterilization processes and related controls. This perceived need for specifics is best
expressed in the supplementary Information at the beginning of the Good Manufacturing Practice for
Medical Devices. ‘The U.S. Food and Drug Administration (FDA) expects to publish additional
GMP regulations applicable to specific types of devices. These future regulations will supplement the
“umbrella” GMP regulation and will be of two types: One will contain requirements that will apply
only to generic types of devices or classes of devices, e.g. pacemakers, eyeglasses, etc.; the other
will contain requirements that will apply to certain devices or cross-class characteristics or
processes, e.g. sterile devices, plastics, electrical properties, etc.’

Product sterilization has always been a difficult process for regulators to properly evaluate.
Product sterilization is achieved by way of complex biological, chemical and physical processes,
often employing rather elaborate pieces of equipment and involving related biological and/or
chemical testing. As was expressed by the FDA when discussing the specialized GMP concept,
spelling out specific details of sterilization processes and controls in cookbook like fashion was
believed to be the way to insure effective control over the industry. Carrying this concept to its
ultimate, meant telling manufacturers how to manufacture, sterilize and control their sterile products.
It was presumed that regulators could write universally acceptable cookbooks for steam, ethylene
oxide, dry heat, radiation and other chemical sterilization methods, and all that industry would have to
do to comply is to follow the document in detail.

If only the world were so simple. Those of us who have worked with sterilization processes know
that there is a myriad of sterilization processes, pieces of equipment, controls and testing procedures
in use throughout industry worldwide. A cookbook approach would result in either a set of
specialized GMP volumes that would in size rival a set of encyclopedias, or conversely, there could
be but a few documents spelling out parameters for just a few approved processes. The latter would
ultimately severely limit the types of sterile products commercially available to health care
providers. Either of these two alternatives are basically unmanageable systems, unacceptable to a
growing, dynamic business such as the sterile medical products industry, and certainly not cost
effective.

The US medical device industry has repeatedly expressed to the FDA by way of various contacts
that specifics for sterilization processes, and controls would stifle advances in technology. ManySingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



firms have developed highly individualized sterilization processes to meet particular product and
packaging requirements. The argument is made that after all, the end goal or purpose of the
sterilization process is to consistantly manufacture sterile products that are safe to use and, as long as
this is accomplished, the specific methodology used should be left to the discretion of the
manufacturer. Fortunately, this dialogue seems to have resulted in changes in approach to the
evaluation and control of sterilization processes on the part of both regulators and industry.

The change began with a re-examination of the umbrella GMP to see if they are applicable to
sterilization processes. Following is a list of general GMP compliance topics as found in the
umbrella FDA document Regulations Establishing US Good Manufacturing Practices for the
Manufacture, Packaging, Storage and Installation of Medical Devices along with questions raised
that specifically relate to the manufacture and control of sterile products.
Buildings and Facilities:

1. Are the buildings of adequate size and design to accomplish the manufacture and control of
sterile products?

2. Is there adequate space and facilities to conduct all phases of a sterilization process; as for
ethylene oxide gas sterilization, the pre-sterilization conditioning, sterilization, post-
sterilization aeration and quarantine operations?

3. Is the manufacturing environment controlled to prevent undesired product contamination?
Manufacturing Equipment:

1. Will manufacturing equipment unduly contaminate products, thereby taxing the ability of a
terminal sterilization process?

2. Does the equipment properly protect the product from contamination, as in aseptic fill
processes?

Components and Materials:
1. Are product and packaging materials and designs compatible with the sterilization process?
2. Are components sufficiently clean and free from microbial (and particulate) contamination?

Manufacturing and Assembly:
1. Is the manufacturing and sterilization equipment properly designed, and are manufacturing

personnel sufficiently trained?
2. Is there proper production flow control to prevent confusion and mixups between sterile and

non-sterile products?
Packaging and Labelling:

1. Are packaging materials compatible with the sterilization process?
2. Is the packaging designed to maintain product sterility until the package is opened and a sterile

device presented for use?
3. Is the product properly labeled, as identifying what portions of the product is intended to be

sterile or so the product can maintain sterility until use?
4. If resterilization is possible or indicated, are satisfactory resterilization directions given or

available?
Measurement Equipment:

1. Are all sterilizer controls, gauges and charting equipment properly and routinely calibrated?Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



2. Are biological and chemical sterility indicators and dosimeters appropriate to the process and
the degree of control required?

Testing:
1. Is there biological testing of product and/or process indicators to assure product sterility or is

there release of sterilized products permitted upon a review of validated process parameters?
2. Is there functional testing of product and packaging following sterilization?
3. Are component and product bioburdens determined?

Records and Reports:
1. Is there adequate documentation accounting for all products being sterilized?
2. Are there appropriate records documenting parameters for the entire sterilization and control

process?
3. Are process indicators and/or sterility tests properly documented?

Reprocessing of Products:
1. Is there documentation to show product and packaging can withstand resterilization?
2. Are adequate records maintained regarding any reason for resterilization?

Calibration:
1. Are all sterilization process indicators, as dosimeters and biological indicators, tested and/or

calibrated before use?
2. Are sterilizer gauges, recorders, thermocouples, etc., calibrated as scheduled using recognized

standards?
Environmental Controls:

1. Is appropriate particulate and microbial filtration available where required?
2. Do employees wear proper uniforms and protective coverings?

Cleaning and Sanitation:
1. Is there a documented routine cleanup program?
2. Are cleaners and sanitizing solutions approved to assure effectiveness and to prevent harmful

residues?
Personnel – Organization and Training:

1. Is there adequate staffing in numbers, training and experience to properly operate and control
the sterilization process?

2. Does the quality control organization have the authority to make required quality decisions?
Complaint Handling:

1. Are records kept of all complaints relating to questions of sterility?
2. Is there proper investigation of all sterility complaints including laboratory sterility testing

when appropriate?
Inspections and Audits of Processes:

1. Is there an audit program for sterilization processes and controls?
2. Is the audit team technically capable and sufficiently impartial to make judgements on the

effectiveness of the sterilization process?
Licensing:
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1. Is there proper registration and/or licensing for the sterile medical product manufacturing
operation?

2. Are all requirements for licensing routinely met?
These questions are examples of what can be derived from topics in the umbrella GMP to show

that this document can be applied to specific sterilization processes and controls. As is shown,
additional specific types of GMP are not needed in order to evaluate and control the manufacture of
sterile medical products. General umbrella type GMPs, which are essentially ‘what to do’ not ‘how
to do’ documents, adequately define what a manufacturer must do in order to comply while it does not
unnecessarily discourage creativity in product and process design nor does it restrict opportunities
for cost savings where possible and appropriate.

In practice, the umbrella GMP has probably been found to be much more useful both to the
government and industry than originally expected. Because of this, the development of supplementary
GMP has really become less and less critical an issue. The questions cited earlier relating to
sterilization processing are typical of those currently being made by investigators who are utilizing
the umbrella GMP. Instead of actively writing a specific GMP for sterile devices, the FDA has, at
least for the interim period, undertaken evaluation of the appropriateness of new approaches to
voluntary industry compliance. These include an in-depth educational program for its field
investigators on sterilization processes, a recently revised detailed inspectional guideline covering
umbrella GMP application to sterilization processes, equipment, and controls, and an increased
dialogue with those outside the government, as working in open forums with industry and academia
on developing guidelines and standards, to help foster better sterilization processing and controls.

Tying down manufacturers to detailed process-related GMP is becoming less and less desirable.
More and more it is being recognized that when a government agency specifies sterilization methods,
equipment, and testing, the responsibility for the success of the sterilization process moves from the
manufacturer to the regulator. Wisely the FDA has historically avoided the temptation to dictate the
mechanics of manufacturing and control operations, and has chosen to place full compliance
responsibility with the manufacturer. Umbrella GMPs accomplish this without dabbling in ‘how-to’
cookbook regulations. It is hoped that the FDA and other regulatory bodies worldwide will continue
to recognize the wiseness of this regulatory philosophy.

Along with this perceived change in GMP philosophy a desire is now being expressed by the FDA
Bureau of Devices, to develop within recognized scientific and technical organizations process
guidelines acceptable to industry and which the FDA could possibly utilize within their own
regulatory structure in some yet to be determined manner. In the US, documents of this type,
developed outside of the government, can as yet have no legal or enforcement significance and from a
regulatory aspect but can be used only for reference or educational purposes. Time and experience
may eventually result in a change to this approach.

Within the US there are now several examples of such guidelines relating to sterile products and
manufacturing processes. These have been developed in the US by organizations such as the
Pharmaceutical Manufacturers Association, the Health Industry Manufacturers Association, and the
Association for the Advancement of Medical Instrumentation.

A very good example of this cooperative approach was begun about three and a half years ago at
the Association for the Advancement of Medical Instrumentation (AAMI) in Arlington, Virginia A
task force was formed to write guidelines for industrial ethylene oxide sterilization of medical

Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



devices. Industry, academia and government representatives working together developed a guideline
under the auspices of this well recognized organization. A guideline was eventually published which
individual companies within the medical device industry found they could readily adopt for their own
internal use, and a document, the government could reference and use for training and even apply in
auditing situations detailing basic sterilization GMP and process validation concepts.

The major concept put forth in the AAMI Guideline for Industrial Ethylene Oxide Sterilization of
Medical Devices, and other related publications is installation qualification and validation of the
sterilization process. This approach set forth in this and similar documents seems to answer the needs
of both regulators and industry. It serves manufacturers as a guideline to establish and control the
sterilization process and it provides regulators with a guideline and documented proof of an effective,
reproducible sterilization process. The validation data generated provides something very tangible
for the regulators to review. They will have detailed documentation of every step within the
sterilization process. Following the guideline regulators can be assured as to whether the
manufacturer has completed necessary validation work and if there are adequate controls assuring
effectiveness of the sterilization process.

The AAMI Guideline serves the manufacturer as a base upon which to build processes and
controls. By following qualification and validation concepts, sterilization can no longer be referred to
as a mystical black box process used to effect a desired end result to a product Sterilization can now
be expressed in objective, measureable terms. Some manufacturers have learned from validation data
that their processes were unnecessarily stringent, the margins of safety so great, that specific process
parameters could safely be reduced or shortened. This has proved to be a pleasant surprise for some
companies by helping to reduce manufacturing costs and by delaying the need to purchase additional
sterilization equipment because of pending capacity problems. Others, as some who experienced
occasional sterility test failures when using traditional product sterility test methods, now know why
they had these misses. They learned that they had processes which had inadequate margins of safety
and that certain process parameters had to be increased The Guidelines are explicit in directing
industry to take the initiative and to validate sterilization processes, to know exactly what is
happening in sterilization processes and to develop a package of processing and control data to
assure themselves, government agencies and, above all, their customers, of safe, sterile medical
products.

A major concern within the AAMI Industrial Ethylene Oxide Sterilization Working Group was to
make the Guideline as simple as possible while retaining the necessary criteria for assuring a good,
meaningful validation program. It was hoped that by presenting sterilization validation in this manner,
each company could efficiently and economically plan and execute its own custom validation
program for specific equipment and products. Also, each company could evaluate the quality of any
existing sterilization validation data, and hopefully be able to use it in their total validation program.
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This diagram found in the AAMI Guideline explains the flow of the entire validation program and
provides to the manufacturer with an excellent foundation upon which to develop protocols. The
AAMI Guideline further defines and explains each topic in this diagram.

Validation is directed to all new, or significantly changed, products, sterilization equipment, or
process controls. The new product definition may include all existing products if a company is just
beginning a validation program and has little or no existing product, equipment, or process data. The
Guideline plainly defines the extent of a validation program: ‘1) Each production chamber should be
qualified, 2) where process uniformity can be shown, new products can be qualified by one chamber
in order to qualify all equivalent chambers, and 3) if a new product can be sterilized using a
previously qualified cycle for a similar product, the new product can be qualified by equivalency.’
Utilizing equivalency can be both technically sound and economically advantageous if properly
exercised. ‘The decision on equivalency should require a formal review utilizing professional
judgement as to sterilization requirements.’ If a product is judged to be equivalent, the company
should have some documentation available to show how it arrived at that conclusion.

The Guideline also states that a validation program is not required for process release if process
monitoring and microbial challenges for each sterilization cycle are equivalent to a performance run,
and if the equipment used has undergone installation qualification. This approach may be used, for
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example, in instances where production qualities of product needed for validation runs are not
available. However, the validation program is intended to be completed when the necessary
quantities of product are routinely available.

It is important to note that the AAMI Guideline avoids prescribing specific numbers, processes,
and equipment, except when absolutely necessary. This permits the manufacturer utmost flexibility in
choices of process parameters, equipment, and controls. The ultimate responsibility for the
effectiveness of the sterilization prcoess is upon the manufacturer. The manufacturer must prove to his
satisfaction and ultimately to the satisfaction of the regulators, that there is in existence a documented
validation program assuring that products labelled as sterile are, in fact, sterile. A manufacturer
following this Guideline should be in compliance with the requirements of the FDA GMP for Medical
Devices even though the Guideline has not yet received any official FDA recognition. We do know
the FDA is using this document in its training of investigators and is referring to this document during
facility inspections, recommending it to manufacturers who need to upgrade their sterilization
operations.

Process validation has led to at least one major breakthrough for US manufacturers.
Manufacturers, upon receiving appropriate FDA approval, may release sterilized product for sale
upon review of documented sterilization parameters with no additional routine sterility testing being
necessary. This is referred to as parametric release. A package of validation data must be presented
to the FDA proving the reliability and reproducibility of the sterilization process before this practice
is permitted To date a number of manufacturers have their radiation, ethylene oxide and steam
autoclaving processes approved for parametric release.

In summary, GMP documents can be beneficial to regulators and industry as guidelines in the
manufacture and control of sterile medical goods. To be most effective, the scope of GMP documents
should be directed to the manufacture and control of a broad class of health care products, as medical
devices, and should have nearly universal application within that category of products. GMP for
specific subgroupings of products or involving unique manufacturing and control procedures, such as
sterile medical products, may dictate specifics in processing equipment and controls. In doing so,
these documents may stifle product and process innovation, result in increased costs for the
manufacturer and consumer, and may remove, at least in part, the responsibility for the success or
failure of a manufacturing operation from the manufacturer and to the regulator. This is a
responsibility regulators should want to avoid. The manufacturer, through the use of proper equipment
and a qualified staff must assume ultimate responsibility for the development, maintenance and
control of a manufacturing operation for sterile medical goods. The preferred method by which a
sterilization process can be developed and evaluated is through completion of a process design and
validation program Such a program is described in the AAMI Technology Assessment Report No. 1-
81, ‘Industrial Ethylene Oxide Sterilization of Medical Devices.’ Completed programs provide both
industry and its regulators with documented, objective data which can be used in constructing and
evaluating the effectiveness of a sterilization process and related controls. Finally, a suitably
designed, validated, controlled and documented sterilization process offers greater confidence in the
success of a sterilization process; better than that offered by employing only the traditional sterility
testing of relatively small numbers of product or biological controls.Single user license provided by AAMI. Further copying, networking, and distribution prohibited.
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DISCUSSION
SESSION IV

Q. from the floor:
Dr Halleck, this question is actually not related to industry but to in-hospital sterilization. Could

you tell me what purpose, other than to validate the design function of a steam sterilizer or the
presence of ethylene oxide, the value of a routine use of biological indicators has in hospital
sterilizers? This question is asked because of the uncertainty of the cleaning capabilities of the staff,
the quality of the equipment, and the packaging and the placement of the items, and so forth. To me, at
best, biological indicators only show that the equipment is working.
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A. by F.E. Halleck – USA
I agree with what you say. There is value in the use of biological indicators in hospital processes.

The purpose of this is first an early detection of equipment malfunction, because sterilizers, like
automobiles, have things that will break down, and it will show early enough that there is a problem.
You have a certain amount of security, based on the higher resistance of the biological indicator rather
than just a routine maintenance programme, to see whether you have a problem with the sterilizer. In
the US, the use of biological indicators in hospitals is not mandatory, except that the Joint
Commission of Hospital Accreditation states that all steam sterilizers should be checked once a week
with a challenge test pack to determine the effectiveness of that sterilizer, and to monitor the chamber
itself. The challenge test pack and the procedure have been specified in a standard that is available
from the American Association for the Advancement of Medical Instrumentation.

The Joint Commission also states that if you have a steam sterilizer with more than one cycle, you
run a biological test using two biological indicators inside a challenge pack in that sterilizer once a
week. There are several kinds of challenge packs, but the standard one consists of 13 folded towels
in a certain configuration of sizes and shapes with double wrappers of muslin or linen.

For ethylene oxide sterilizers, the Joint Commission recommends that the hospitals use for every
cycle two indicators inside some type of package. They feel that the parameters of ethylene oxide
sterilization involving integration of the humidity control, the packaging material, the gas
concentration, and time are so interrelated, that they are not comfortable with once a week
monitoring.

Thirdly, if a product used is an implant, they recommend that a biological indicator be used in a
simulated product with that implant, whether it is steam or gas sterilization.

However, under no circumstances in any cycle, either the ethylene oxide or the steam sterilizer
cycle, are products held in quarantine till the biological indicator test is done. Even though you can
get results on the biological test in 48 hours with some degree of assurance, we recommend, as does
the USP not to hold the product in quarantine. If you wish, you may continue to incubate for seven
days. Now the question is, how safe is that procedure. The procedure is based upon the judgment of a
large number of people, not myself necessarily, and is based on statistical data and evidence that the
resistance of the biological indicators is far greater than that of the potential bioburden on the
product. Therefore, the chances of a patient getting a nonsterile item is very remote. However, when
the biological indicator is ‘positive’, it is an indication that the sterilizer must be immediately shut
down, and a programme of service be addressed to get it in proper working order.
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Q. from the floor:
I would just like to add that it still does not indicate that all items in the load are sterile, if you do

not get growth.
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A. by F.E. Halleck – USA
I agree. But remember, a biological indicator is a monitor to confirm that the process is working.

The indicator in the chamber does not replace the biological indicator. You must put it in a package. It
only gives you a degree of a relationship to the packaged product that you are sterilizing. In hospitals,
you have an entirely different problem, because you have a multiplicity of packages. It is always a
mixed load. However, if you use a ‘challenge pack’, as the Joint Commission recommends, and
AAMI has developed as a guideline, I think you will rarely find a sterilizing process that shows
contamination, particularly if you use the recommendation of the Joint Commission as well as the
Association of Operating Room Nurses Guidelines.

_______________
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Q. by S. Riley – Australia
I have a two-part question to put to Dr Halleck. You suggested that the self-contained spore strips

can be handled effectively by Sterile Supply Department staff. After hearing Dr McKay’s statement on
some of the problems with biological monitors and media, is it your opinion that:

1) Those staff who are not skilled in microbiology, such as most hospital sterilizing personnel,
should carry out spore monitoring tests?

2) If you agree with this, could it not be subject to operator misuse?
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A. by F.E. Halleck – USA
First and foremost, I do not recommend that the Central Service Department do any kind of

microbiological testing, such as the implantation of spore strips. Generally (I am talking about the
US), people working in the Central Service Departments, even nurses, are not qualified to do
microbiological testing and aseptic transfer, or have the laminar-flow bench, where it is needed, to
transfer the spore strips into the test-tube test. This is usually done by the Pathology or Microbiology
Departments in the hospital. What I recommend is, that because you do not have the capabilities of a
microbiologist in the Central Services or instrument processing rooms, where sterilizing is taking
place, there are available worldwide today self-contained indicator systems. There are others, that
work equally well, that can be used with confidence by those who are not trained as microbiologists.
If there is a ‘positive’, I would recommend that the ‘positive’ samples be sent to the microbiology
laboratory for confirmation. Generally, for routine analysis, such as in the US, these self-contained
biological indicators are almost fool-proof, as we have specialized incubators available for them.
You can have small ones, which are desk-type, and you do get a feeling of comfort with them.

_______________
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Q. by E.R. Pavillard – Australia
Dr McKay, you made a statement that, I think, is very disquieting. It relates to the fact that when

you tried to elute microorganisms out of a haemodialyser coil, you got negative cultures. When you
filtered the coil with culture media and incubated it, you got positive results. A similar case was
mentioned by Dr Dodson. Now, if, in fact, you cannot remove microorganisms from a sample of an
item, then how can you measure the bioburden? If you cannot measure the bioburden, then what we
have talked about today may not be as valuable as we think it is.
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A. by D. McKay – Australia
I think, measuring the bioburden of, say, a liquid preparation may be a relatively simple process,

but measuring the bioburden of something complex like a kidney dialysis unit, or a piece of skin
grafting material, or something of that nature, may be almost impossible. I think, when problems like
that are found, then the only solutions are the fractional exposure techniques described in the AAMI
document on validation of radiation and sterilization. Some of these techniques, fortunately, do not
require an estimation of bioburden, but they do require an estimation of the resistance of the
bioburden. This is done not by counting, but by giving graded doses in the sterilizing process, and by
looking for fraction positive results. However, I agree, it is almost impossible to quantitate the
number of microorganisms in some samples.

_______________
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Q. by G. Nelson – Australia
I would like to ask Mr Nygard, or the panel, their views regarding good manufacturing practice, as

to whether a similar sort of practice should apply to the manufacture of the primary packaging
materials, that are there to ensure retention of sterility of the device and whether there is any move to
legislate on this.
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A. by J.E.W. Nygard – USA
To answer your latter question first, unfortunately I am not aware of any legislation, but at the

same time, I am certainly not privy to what goes on inside regulatory operations within the US. It
would appear to me that the question of sterility barrier is one that has been discussed repeatedly,
certainly within the US. It has resulted in numerous meetings, and professional organizations have
been formed concerned with the issue of sterility barrier for sterile products. At this time, in the US,
the responsibility for the adequacy of the sterile barrier rests with the manufacturer of the item. He
provides the assurances that the packaging system used is in fact a sound one, or one that will retain
the sterility of the product. The responsibility lies with the manufacturer of the sterile item and the
packaging supplier, with tests to determine the quality of the materials and seals of the package used.
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A. by F.E. Halleck – USA
I would like to add more to that subject. Perhaps you are not aware, but you should know that

there is a programme being instituted which is to begin in 1983 in the US, on standards,
specifications, and guidelines to be applied to primary packets for sterility barriers. This will be
based on package materials that are available and used in hospitals. This study is to be undertaken by
The Applied Paper Institute, or TAPI, in co-operation with AAMI and the Health Industry
Manufacturers Association. We will, hopefully, devise and arrive at specific test methodologies by
which we can evaluate the biobarriers of various packaging materials. We foresee right now
(although we are not sure until the tests are done and it will be a year’s study or longer) that there
will probably be a specific test methodology for making a judgment on a packaging material. There
will also be different tests for different types of packaging material. For example, there will be one
type for a textile type of wrap, there will be another type for paper or paper-type products, there will
be one for nonwovens, and there may be quite a different one for films or plastic films, and so on.
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Sterilization Process Technology – Part 1
Introduction to Session
Ronald A. Anderson

In addressing this subject of sterilization, aspects of heat sterilization of medical products, as well as
some factors affecting the maintenance of sterility, will be considered.

There are methods that can eliminate high levels of microbial contamination. However, one of the
difficulties associated with the sterilization of some medical products and many pharmaceuticals is
that they, along with the contaminants, are adversely affected by some or all of the agents used. Very
often, the process that is finally chosen takes account of potential product instability, as well as the
extent and nature of the bioburden.

With some pharmaceutical products, we can take into account the effect that components of the
product may have on the contaminants. Some pharmaceutical formulations will augment kill by heat
and possibly reduce the severity of the treatment required. The British Pharmacopoeia recognizes
that some antimicrobial chemicals augment the effects of steaming to such an extent that a 30-minute
exposure at 98-100°C is used for some products. The process called ‘Heating with a Bactericide’ is
permitted for some products that will not satisfactorily withstand the higher temperatures used in
autoclaving cycles. It is well recognized that if this process is used, the bioburden must be low.

The increasing tendency to apply a heat treatment, based on knowledge of the bioburden and on
other factors which may affect the efficiency of the process, is satisfactory when properly validated
cycles are applied with proper controls.
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Heat Sterilization – Process Development and
Validation
James Whitbourne

Sterilization Technical Services Inc.
Rush, New York, USA

In the United States, the need to validate heat sterilization processes has become formalized as a
result of federally mandated Good Manufacturing Practices. In response to this, groups of technical
experts have drafted documents that detail various methods appropriate for developing and validating
heat sterilization processes. These groups include Health Industry Manufacturers Association,
Parenteral Drug Association, Parenteral Manufacturers Association, and Canadian Environmental
Health Directorate – Health Protection Branch. The input from these experts has in a very rapid
fashion brought together and defined state-of-the-art information, which is a highly useful tool in
designing optimal cycles.

The term ‘sterility’ has more recently been approached on the basis of probability, as conventional
methods of sterility assessment, in reality, offer a very low level of assurance. This concept permits
design of heat processes that meet particular applications, while providing a high level of sterility
assurance.

Two basic concepts have come to the forefront as approaches to the development of sterilization
cycles. They lend themselves very well to heat sterilization processes. The first concept is generally
referred to as ‘overkill’, a method in which a high, calibrated level of resistant micro-organisms is
used to ensure that a significant sterilization dose has been applied. The second concept involves
investigation of the resistance of the naturally occurring microorganisms or bioburden associated with
the material being sterilized. The information is then utilized to define a calibrated biological
indicator, thus assuring delivery of an effective sterilization dose. The former technique utilizes lot-
by-lot sterility testing, while the latter may employ this type of testing, but also permits the use of
dosimetric testing.

Materials sterilized by heat processes generally fall into two broad categories, those that are heat
stable, and those that are affected by heat. An example of the former would be metal hypodermic
needles and of the latter, various parenteral solutions. Sterilization of nonheat-labile materials lends
itself to either the overkill or the bioburden approach. However, the overkill is favoured, because it
requires a less rigorous approach, and, as such, it is more cost-effective. Materials that are degraded
in a heat sterilization process can be sterilized by defining a minimal dose which results in less
product degradation, while still providing a significant level of sterility assurance.

Overkill involves use of an appropriate spore in the form of an inoculated carrier such as a filter
disc or chromatography paper, or may be directly inoculated on or in the product or material being
sterilized. By use of resistant spores, we can ensure the delivery of a significant dose that is adjudged
sufficient to render the product sterile. Typical resistance factors or D values for the more commonly
used spores to monitor steam or dry heat processes are presented in Table 1.Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



Table 1
Spores for monitoring heat sterilization processes
Spore D value Temp °C* Process monitor
B. stearothermophilus 1.5 121 Steam
B. subtilis var. niger 1.0 170 Dry heat
Clostridium sporogenes 0.7 121 Steam
Clostridium sporogenes 3.5 112 Steam
*Temperature at which the D value was determined.

The bioburden approach requires an in-depth analysis of the product bioburden, the inate
resistance to steam or dry heat of that bioburden, and the definition of a biological indicator capable
of reflecting a degree of resistance beyond that found for the product bioburden. In this manner, we
are able to bring into our equation a statistical factor and define a probability of nonsterility. This
probability of nonsterility is generally greater than that which is obtained from a standard sterility
test, such as that defined in the US Pharmacopeia.

Bioburden determination must be done to define both numbers and types of organisms. However,
in this analysis, the types that we are interested in are generally only the spore-forming organisms, or
others that may have a significant resistance to the particular heat process used. Generally, non-spore
formers are of little consequence. In some instances, it may be appropriate to isolate and propagate
particular species and understand their particular resistance to the heat sterilization mode, and use
them as the biological indicator for monitoring the process.

The exposure temperature chosen for a process may be the standard 121°C in steam, or 170°C in
dry heat. However, in many cases lower temperatures are used, especially where the material is heat-
labile, and reduced temperatures result in less product degradation.

Processing at lower temperatures has long been practiced in the food canning industry, and more
recently this technology, largely as a result of commercial preparation of the parenteral solutions, has
been more often used in the treatment of medical products.

When employing lower temperatures, either in steam or dry heat, we are increasing the range of
organisms that may potentially survive the process. It becomes, therefore, even more important to
understand the thermal resistance characteristics of the bioburden, to increase the frequency of
monitoring, and establish more rigorous standards, intended to exclude microorganisms from the
manufacturing environment.

The method used in assessing the resistance of the bioburden, or the indicator microorganisms
used in monitoring a process, requires the determination of the D value. D value determination of
non-heterogenous populations, as is the case of the bioburden of most products, is prone to error,
because we are dealing with inactivation rates that differ for the various microorganisms making up
the total population. However, the need to understand this resistance pattern outweighs the error
introduced, and adjustments can be made in our calculations to overcome the error factor.

D values are best determined using either the direct enumeration technique to plot the rate of
microbial kill over time, or the fraction negative technique of Halvorson and Ziegler, in whichSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



positive and negative data from sterility test assessments are used to calculate the D value. The
mathematical expressions are shown in Table 2.

Table 2
D value assessment

Direct enumeration Fraction negative (Halvorson-Ziegler)

t = exposure time t = exposure time
No = initial population No = initial population
Nu = population at time t r = number of samples tested

q = number of samples sterile

Both methods can be very effectively used to determine a D value for homogenous populations, as
in the example of organisms used for biological indicators. However, the direct enumeration
technique is not so effective when determining bioburden resistance, because we may be working
with a low population which in itself represents a recovery problem, and regression analysis of the
data will not properly compensate for the nonlinearity generally associated with a survivor curve for
a nonhomogenous population. The fraction negative technique is more appropriate for data for the
nonhomogenous population, because we are calculating a D value at discrete points. It permits us to
discard the data at shorter exposure times, where the population of the nonresistant organisms present
has had a large influence on the D value obtained. It is possible, using either technique, to select the
thermal resistant fraction of the bioburden by means of a heat shock procedure and thus deal only with
the more resistant organisms.

In thermal processing, a linear relationship has been shown when D values are determined at
different temperatures. A plot of D value vs. temperature can be used to establish a constant or z
value, defining the temperature change necessary to alter the kill rate by a factor of 10 or one log
value. This is shown in Figure 1.

This information is useful, because it permits us to extrapolate the lethal rates at higher or lower
temperatures using actual data at known temperatures. Also employed in heat processes is the F value
concept.  may be defined as the lethal effect at some temperature as compared to a reference
temperature. For steam sterilization, the usual reference temperature is 250°F, and F in this case is
referred to as Fo if z = 18.
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Figure 1.   z value determination.

F values are calculated as follows:

F = Δt . Σ L
Δt = time interval between temperature measurements

                    L = lethal rate

By definition, in this equation, if T = 250 then L = 1. Thus, for temperatures higher than 250°F, L >
1 and for temperatures less than 250°F, L < 1.

An example of the F value concept is shown in Figure 2. A thermal plot of temperature vs. time
has been made and the lethal rate (L) at two-minute intervals calculated to give an F value for the
process. Thus, we have calculated the total sterilization dose including the effect at all temperatures
above 200°F, and equated this to the effect of sterilization at the single temperature of 250°F. In the
example, exposure at 250°F is for about four minutes. However, the total exposure is equivalent to
exposure for 7.2 minutes at 250°F, including the heating and cooling time.

A similar analysis of dry-heat processes can be made, and the commonly accepted reference
temperature is 170°C and z=20.

The use of these techniques permits temperature data, collected from each sterilization cycle, to be
converted to a known reference standard, or to a standard that has been developed for the particular
material being processed. This provides further assurance of achieving a minimal dose.
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Figure 2

The information gained in the analysis described permits us to establish a sterilization cycle
appropriate for the product application studied. If we have determined the resistance of the
bioburden, or are using a resistant spore form, the sterilization time or cycle length can be
approximated using the following equation:

t = D(log M + X)
t = sterilization time
M = average population or bioburden + 3 SD
X = desired safety factor

The sterilization time begins when the temperature at which D was determined is reached, and is
found through thermal mapping. The thermal mapping must be done in a manner that will identify the
slowest to heat and the coolest areas in the load. The contribution from heating and cooling, or
temperature excursions around the process temperature, that is the F value, can be assessed, and
factored in, to adjust the total sterilization cycle time.
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Validation
The primary function of a validation programme is to determine if an effective sterilization process
can be routinely and reproducibly carried out. The validation of heat sterilization processes is similar
in many respects, whether it is steam or dry heat, done in a closed chamber or in a heat tunnel. There
are some important aspects that must be evaluated in a rigorous programme designed to qualify all
critical phases of the heat process.

The installation, or equipment qualification phase, is the logical first step in assuring that the
process can be conducted effectively, and that it is reproducible. Equipment lacking the capability of
reliably performing within established parameters will not permit a process to be run in a controlled
manner.

In the following listing, important areas to be covered in the installation qualification are
specified.

Installation Qualification
Item Steam Dry-heat ovens Dry-heat tunnel

Equipment manufacturers literature X X X
Utilities required for operation X X X
Boiler capability X
Maintenance programme and log X X X
Physical condition of equipment X X X
Calibration programme X X X
Drawings of equipment and facility X X X

During the installation qualification, pertinent aspects are reviewed including all available
literature from the manufacturer to ensure that the equipment is capable of performing the desired
process. Any needed changes or upgrading should be done as a part of validation. The utility
requirements necessary to provide all energy needs should be specified. For steam processes, the
boiler capacity and makeup capability should be assessed to ensure delivery of sufficient quality
steam. A preventative maintenance programme and a log documenting maintenance activity should be
provided. The physical condition of the equipment should be assessed and, as noted previously,
necessary changes should be made. This will ensure than no change will be necessary during the
validation study, that will influence the results of individual tests. A calibration protocol to be
conducted during the validation tests should be prepared. There should be included calibration of
monitoring and sensing equipment, such as pressure gauges or temperature gauges, timers,
thermocouples, etc., and the calibration should be traceable to a NBS reference. Drawings of
equipment and facilities should be on file, to be referenced for maintenance purposes or modification
in the system.

Following completion of the various aspects of the installation qualification, work on the second
phase of validation, the performance qualification, is ready to begin. Generally, the performance
qualification is considered to fall into two categories: equipment validation and microbiological
validation.
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Validation of Steam Sterilization Processes
Equipment Validation

During the validation cycles for a steam process, the minimal exposure parameters are used to
establish cycle effectiveness. A temperature profile is made, one designed to map effectively the
thermal variations in the chamber, as well as to delineate the heating and cooling rates of the load. All
monitoring and sensing equipment is calibrated at the beginning and the end of each validation cycle.
At least three repetitive runs are made to establish performance consistency.

Microbiological Validation
Challenge microbial spores are used in each of the validation cycles. Generally, 20 samples are used
and positioned in a manner providing challenge to the cooler or slower heating zones in the load.
Consistent kill, or reduction of spore population, should be demonstrated in each cycle.

Validation of Dry-Heat Ovens
Equipment Validation

In the performance qualification of hot-air ovens, the equipment must be extensively monitored to
determine the heat distribution profile. Sites found to heat more slowly, or to be at lower
temperatures, will serve as the reference points for measuring time at temperature and the location of
biological indicators. This should include heat-penetration studies of the material being processed, to
define further the reference time at temperature and biological indicator locations. If the system is
equipped with a forced-air capability, the flow rate during validation should be the minimum defined
in the process parameters, and the loading configuration should reflect the ‘worst case’ situation.

Microbiological Validation
Microbiological studies are included during validation to provide additional assurance of the
delivery of the required heat dose to all portions of the product. Placement of the biological
indicators must represent ‘worst case’ load size and configuration. A geometric pattern for placement
of the biological indicators should be followed, with emphasis given to cooler or slower to heat
areas.

Validation of Tunnel Systems Employing Heat
Equipment Validation

Heat tunnels are more complex than ovens and require a study and validation of more variables. It
will generally be necessary to conduct prior to validation an extensive heat profile of the system, to
establish the process parameters that will then be used in the actual validation programme. This will
be necessary for each specific throughput rate and temperature to be used. For a given tunnel process,
monitoring during validation should include:

1. Hood temperature at maximum line speed
2. Hood temperature at minimum air flow rate
3. Hood temperature at coolest burner rate specified for the process
4. Heat-up profile of the material being processed
5. Geometric location of thermal probes within the product to include the full width of the

conveyor system.
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Microbiological Validation
Microbiological studies to confirm the efficacy and uniformity of the tunnel operation should consist
of biological indicators placed in a geometric pattern in a manner to assess the operation under
minimal temperature and maximum line speed.
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Sterilization – The Hospital Environment
Frank L. Hebbard

Health Commission of New South Wales
Sydney, New South Wales, Australia

In Australia, we are faced with a number of problem areas that are generally not applicable in the
United Kingdom and in the United States of America. These affect in many ways the methods and
materials used for sterilizing procedures in most hospitals.

There are approximately 290 public and 80 private hospitals (excluding nursing homes) in New
South Wales that carry out patient care. They all require sterile items.

In the total number of 370 hospitals, only 30 are equipped with 64 prevacuum steam pressure
sterilizers which is approximately 8% of all hospitals. A similar situation exists in hospitals in other
states.

We shall compare Australia with the UK and US, from which we purchase, both directly and
indirectly, a large proportion of items that must be sterile when used. In the UK, the land area is 87
818 square miles with a population of 55 000 000. In Australia, the land area is 2 974 579 square
miles with a population of 15 053 000. The breakup for states, excluding Tasmania, the Australian
Capital Territory, and the Northern Territory, is as follows:

Land Area Population
New South Wales 309 433 square miles 5 260 000
Victoria 87 884 square miles 4 000 000
Queensland 667 000 square miles 2 000 000
Western Australia 995 000 square miles 1 250 000
South Australia 380 070 square miles 1 250 000

England, Scotland, and Wales would fit into Australia 34 times and into New South Wales 3.5
times.

Mainland United States (48 states) has a land area of 3 022 260 square miles and a population of
231 480 000.

The distance between Australian cities and towns, and the small population inhabiting inland
areas is such that technical expertise related to specialized equipment is often beyond the capabilities
of available maintenance staff. Maintenance services are mostly from capital cities. There can be
both a delay and a high cost in providing services. A service call could cost $A500 or more to rectify
a minor fault. Before the serviceman returns to base, another fault could occur. Sophisticated
equipment in many locations could be unreliable, and lengthy breakdowns could be detrimental to
patient care. In the UK and US, because of shorter distances and much higher population density,
expert technical service is usually only a short distance away.

Shortages of water can be serious, especially where it is used in large quantities for the operation
of equipment such as vacuum pumps in prevacuum steam pressure sterilizers. Even in Sydney,
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regulations require that water used for this purpose be recycled. This is usually done by passing
water through expensive chiller systems and then reusing it.

There are some differences between country and city hospitals. Most country hospitals are small
in size, and surgical procedures are of a simple type and require general type surgical equipment.
Sterile-item requirements in such hospitals are relatively small. Such a small workload would not
justify an expense of installing high-output complicated equipment such as prevacuum steam pressure
sterilizers.

New South Wales country regional centres have been, or are being, developed to provide many
sterile items for patient care from a central service, and sterilizing facilities in all hospitals are
subject to this rationalization. Such rationalization is related to the type of hospital and the type of
patient being treated. Where a hospital has one or more operating theatres, the aim is to provide,
where possible, all sterile equipment other than items such as surgical instruments, holloware
(stainless steel or plastic), and anaesthetic equipment. Sterile items to be supplied include theatre
textile packs, swabs, sponges, dressings, and single-use items, e.g. syringes, needles, catheters, and
devices. Thus, sterile items could either be prepared and processed at a regional or subregional
supply unit associated with a regional textile service or purchased as sterile from commercial
sources in bulk and distributed in small quantities to user-hospitals.

To provide this type of service, it is very costly because of distances between hospitals, poor road
conditions, and small stock quantities involved. One service functioning in northern NSW has, as an
example, one supply route for which the round trip is 560 km. This trip caters for only seven hospitals
on a three-times-a-week basis.

It has been found that it is not practical to supply sterile packs of surgical instruments and
holloware to such hospitals from a central supply unit, because of the number of surgical procedures
that could be carried out between deliveries. Possible delays of deliveries may be due to natural
hazards such as floods and fires. Very large numbers of instruments are required and costs of
providing such a service are prohibitive. For these reasons, these hospitals are provided with
sterilizing facilities suitable for their needs. Most hospitals carrying out surgery are equipped with
downward displacement steam pressure sterilizers, hot air sterilizers, and ancillary equipment
including ultrasonic cleaners, drying cabinets, respiratory equipment, decontaminators, etc.

Hospitals in cities may have similar equipment to those in country areas, depending on their size
and workload. However, finance has not been available to equip all city hospitals with the
prevacuum type steam pressure sterilizers. Where hospitals have a large surgical workload and carry
out sophisticated surgery, the sterilizing and ancillary equipment is comparable with the most modern
hospitals anywhere overseas. Equipment installed includes prevacuum steam pressure sterilizers,
downward displacement steam sterilizers, hot air sterilizers, ethylene oxide sterilizers, aeration
cabinets, drying cabinets, ultrasonic cleaners, washer decontaminators, and drying equipment for
respiratory items.

The low temperature steam-formaldehyde process is at present not being used in NSW hospitals,
and will not be accepted until the present design is further improved.

In NSW, for many years, hospitals have been strictly controlled with regard to the quality, design,
and type of sterilizing and ancillary equipment. Management of hospitals has been required to refer
requests for new or replacement equipment to the Health Commission. Each request is then
investigated. If approved, only equipment that meets relevant Australian standards, HealthSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



Commission, and Public Works Department specifications, is purchased. On completion of
manufacture, each item is checked before delivery for compliance to specification and performance-
tested in the factory with a hospital-type load. After installation, a further check of satisfactory
operation with a hospital-type load is made before the unit is handed over to the hospital for routine
use. All companies wishing to market new sterilizing and ancillary equipment for use in NSW
hospitals must first submit technical data to the Health Commission and Public Works Department. If
the data are satisfactory, a unit is installed for exhaustive ‘in-use’ testing in a busy city hospital. If
satisfactory, the unit is then considered suitable for competitive tender for public hospitals or for
purchase by private hospitals. Ethylene oxide sterilizers are installed only in some of the larger city
or regional base hospitals and are further subject to occupational health authority regulations,
including the licensing of operating staff.

Hospital staff operating sterilizing equipment in NSW falls into two classifications, nursing staff
and lay staff. The majority of country hospital equipment is operated by nursing staff. However, most
large country hospitals and almost all city hospitals are equipped with a sterile supply unit, either of
the general type, or specifically for operating theatre supply. Training of staff for these areas has been
carried out in NSW since the late 1960s. The early courses were organized by personnel working in
sterile supply units who had formed The Sterilizing Research and Advisory Council of Australia
(N.S.W. Branch). After a number of years, financial assistance was sought from the Health
Commission, who then appointed a full time tutor. Two courses have been in operation for some
years:

–   Course 1 – Sterilizing Technology
This course is of twelve-month duration and consists of part correspondence, part live-in
tuition, and is concluded by an examination and issue of certificates. Student intake each year is
approximately 70.

–   Course 2 – Sterile Supply Management
This course is of six-month duration and is of a similar type to the Sterilizing Technology
Course (correspondence and live-in). A prerequisite for this course is a successful completion
of Course 1.

Students attending live-in sessions received leave-with-pay and also travel and sustenance
allowances. Financial restrictions have delayed the commencement of additional courses, including
one for maintenance personnel. Similar courses are conducted in most other states in Australia with
course content approved by a federal body as being of a comparable type.
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Packaging Materials
It has been found that many types of packaging materials that appear on the Australian market were
designed for use in prevacuum steam sterilizers and/or ethylene oxide sterilizers. Whilst these
packaging materials may have improved resistance to the recontamination of pack contents after
sterilization, and be suitable for the prevacuum steam sterilizer and ethylene oxide process, they are
of little use if the pack contents cannot be sterilized in the first place. It is to be noted that in the UK it
is most unusual to see a downward displacement porous load steam sterilizer in use. I have visited
many hospitals over a number of years and can recall seeing only one unit of this type.

The type of sterilizing equipment installed in hospitals determines many aspects of procedural
methods, and requires selection of items and other materials that are compatible with this equipment.
Most Australian hospitals must retain their surgical instruments and holloware within the hospital and
reprocess them wrapped and sterilized for elective use. The majority of steam sterilizers installed in
Australian hospitals are of the downward displacement type, and the location of most hospitals
requires equipment that is simple to operate, relatively easy to service and maintain, with spare parts
being readily available.

It is to be remembered that removal of air from packages and their contents is much more difficult
in the downward displacement type unit. If steam in its downward movement passes under packages
before air is displaced, that air remains in the pack and is compressed towards the centre of the pack,
with possible survival of organisms in that area. For this reason, we have used packaging materials
that will allow within time limits air to be readily displaced, steam to reach all surfaces to be
sterilized, and drying of the pack and contents. The packaging must also have resistance to
recontamination when handled and stored correctly within time limits. Surgical instruments may be in
sets of up to 100 items, small multiples to a pack, or as a single item.

To facilitate drying and to spread condensate produced during the sterilizing stage, many hospitals
first wrap instruments in textiles. This wrap is then usually used on the operating theatre instrument
table. Covering such a wrap is either a double-thickness wrapper of textile, which when the package
is complete provides a multilayer of textile around the contents, or, in addition, an outer multilayer
wrap of paper. The paper used is bleached bag Kraft GSM49 type manufactured to an Australian
standard. This standard is basically similar to the British Ministry of Health Specification
TSS/S/330004. Holloware is made into packs with strict limitations of the quantity and types of items
in each pack. These packs are wrapped in textile wrappers of double thickness, and the pack is
multilayered. Some hospitals wrap in multiple layers of paper.

Textiles used in operating theatres as wrappers for items to be sterilized are now standardized
with regard to material, dimensions, method of fold, etc. The material is polyester-cotton 50/50 with
a yarn of 33 Tex weft and weave, and with a weft and weave of 23 yarn/cm. This material has been
investigated by microbiological advisers to the Health Commission and found to be comparable with
other materials in use in the UK and the US. After use, textiles are laundered and inspected over
illuminated tables for holes, lint, fluff, stains, etc. Holes are repaired with adhesive patches. Other
types of packaging are paper bags of bleached bag Kraft, manufactured to an Australian standard,
similar to the British Ministry of Health Specification TSS/S/30006. Aluminium foil of a suitable
quality, sealed glass jars, and metal containers are used for items to be subjected to the hot airSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



sterilizing process. Various other types of specialized packaging from commercial sources may be
used if suitable for the type of sterilizing equipment installed.

Over recent years, there has been a shift to the purchase of many prepacked sterile porous and
nonporous single-use items from commercial sources. This was resisted for many years by many
small hospital authorities on the basis of cost. In many instances, labour costs for the preparation of
these items within hospitals was regarded as nil. Staff who were on duty had sufficient time to carry
out such work without affecting other duties. Since rationalization of sterilizing equipment within
hospitals has been effected, it has been found more economical in many instances not to replace old
equipment, thereby changing this situation.

A number of problems do occur in some hospitals with the provision of some types of
commercially packaged sterilized items. A hospital may be required to have on hand items used very
infrequently. Some of these problems are:

(a) The marketed pack may contain too many items to be used within a reasonable time. If, after a
period of time, excess items are discarded, costs rise. The nursing staff regards the commercially
sterilized packs as sterile forever, whereas they know that hospital-sterilized items have a limited
shelf life.

(b) In some areas, for instance subregional stores in a base hospital, purchase items such as Foleys
catheters (ten to a box). The box is opened for distribution of one or more of each size to each
user, and this may, or may not, be carried out in ideal conditions. For some years, I saw in a
hospital general store all stock stored alphabetically, and there were syringes stored alongside
the sugar.

(c) Transport and storage of commercially prepared items are not always carried out in the same
conditions as those items processed within the hospital. It is usual to have in most hospitals
sterilizing facilities adjacent to the main use point and to provide suitable facilities and methods
of transfer to other use points. Commercial items are often transported by rail with poor handling
conditions or in vehicles for long distances in wet or very dusty conditions, then dumped in a
general hospital stores area, where all types of other items, including food, are also delivered.
Storage in hospital main stores may be adjacent to food items or, even if in a separate section, be
vulnerable to insects and vermin. In addition, the store staff is very often not trained in the correct
handling of such items.

Such are some of the problems involved with sterile products in the hospital environment.
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Sterility Maintenance – Porous Packaging Materials
Alan Tallentire and Colin S. Sinclair

University of Manchester
Manchester, United Kingdom

The primary function of a package enclosing a ‘sterile’ medical or surgical item is to be an absolute
barrier towards microorganisms. The protective function of the package with respect to preventing
mechanical damage to the contents, although important, is secondary to its action as a barrier.

Generally, the function of the package as a barrier operates from the time that the item is exposed
to the sterilization treatment until it is used. It follows that the material(s) constituting the package
must permit the sterilization treatment to operate effectively, yet present a total barrier to potential
microbial contaminants during poststerilization storage, handling and transport. With ionizing
radiation as the sterilizing agent, these requirements can be readily met; high-energy photons or
electrons traverse barriers known to be impenetrable in respect of microorganisms, e.g. metal foil
and polyethylene film, essentially without reduction in lethal effectiveness. In such circumstances, the
principal operational concerns associated with the package are ensuring the effective function of
seals and minimizing structural defects. In contrast, with sterilizing treatments which require the
translocation of the inactivating agent across the barrier, e.g. saturated steam and ethylene oxide, the
packaging material must permit the ready passage of the agent while preventing the penetration of
microorganisms. Also important with these sterilizing treatments is the need for adequate
permeability of the barrier towards air, as evacuation is often a part of the treatment cycle, and if air
cannot pass freely across the barrier, the package is liable to burst. In practice, these requirements are
met by fabricating the package, at least in part, from so-called ‘porous’ web materials, such as paper
or spun-bonded polyolefin. It is also worth noting that, for a variety of reasons, porous webs may be
included in the package of items destined for radiation sterilization.

The ability of porous packaging materials to act as barriers to microorganisms is clearly a prime
consideration in sterility maintenance.
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Direct Tests of the Penetrability of Porous Packaging Materials
Test Design
Documented test procedures aimed at measuring directly the ability of a material, packaging or
otherwise, to stop particulate matter have certain features that are common to all.

The essence of these test procedures is that a sample of the material under test, taken at random
from bulk, is located as a barrier in a fluid flow, gaseous or liquid, containing a dispersion of test
particles (cellular or nonbiological particulate matter). The stopping power or efficiency of the
barrier is determined by comparing the size and numbers of particles contained in the fluid on each
side of the barrier.

The performance of such tests involves several crucial operations:

Setting up
The system must have a minimum of two compartments separated by the barrier under test. One
compartment must allow introduction of the fluid to the barrier in a uniform manner. The type,
size, shape, density, charge, etc. of particles must be similar to those likely to be encountered by
the barrier in practice, as should be the fluid carrier. Particles must be uniformly dispersed in the
fluid at an appropriate concentration.

Passage of the fluid
There must be a driving force for the fluid flow between the two compartments, which in turn is
responsible for movement of the particles towards the barrier. Commonly, either reduced or
positive pressure is this force. With liquid fluids, capillary action or gravity can provide the
necessary force.

Sampling
In its simplest form, this can be done by placing a second barrier of known appropriate stopping
efficiency downstream relative to the test barrier and examining it for the presence of particles
after allowing passage of a given volume of fluid. More sophisticated sampling devices are
possible, including those that monitor continuously during fluid flow.

Analysis
The analytical method must be specific for the chosen test particle and ideally it should be
sufficiently sensitive to detect the presence of a single particle. Generally, methods of analysis
based on chemical means of detection cannot meet this ideal. Physical methods, on the other hand,
for example detection of isotopically labelled particles, although not reported in routine use,
could well be valuable in this regard. The ideal can, however, be approached when viable cells
constitute the test particles, since a single viable cell cultured under proper conditions will
produce a visible colony that can be readily scored.

U.K. Test
At present in the UK, the Department of Health and Social Security (DHSS) specifications (1, 2, 3)
relating to papers used to fabricate drapes, or to make bags for sterilization purposes, include a
requirement for compliance with a test for methylene blue penetration. This is the sole requirement inSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



these specifications concerned directly with standards on particle penetration. The test method is that
of British Standard 2577 (4), devised to permit the assessment of the protection afforded by
respirator canisters against particulate clouds.

The implication behind the DHSS specification on penetration, as applied to sterilizable papers,
is that it provides a measure of the protection afforded by those papers against microbial penetration.
In other words, a limit on penetration of a barrier by a nonbiological particulate dispersion is used to
indicate penetrability towards viable microorganisms. The validity of this action has to be
questioned. Present limited data do not allow the efficiency of a barrier in respect of nonbiological
test particles to be equated with that in respect of microorganisms. A measurement of the stopping
power of a barrier relates only to the conditions under which the measurement is made, and therefore,
in determining the penetrability of materials towards microorganisms, appropriate viable organisms
must be the test particles.

Typical Test Procedures Employing Microorganisms
Published tests of the penetrability of packaging materials towards microorganisms may be divided
into two general categories, those employing gaseous fluid (usually air) as carrier of the test organism
and those using a liquid (usually water). The test employing air is intended to simulate the challenge
to materials encountered with normal storage conditions, whereas that employing liquid is regarded
as simulating the worst conditions that materials may encounter.

Typical of the tests using a liquid carrier is the one described by Harbord (5). A sample of
packaging material of specified size is floated on the surface of an aliquot of sterile water contained
in a Petri dish. A drop of a suspension of viable Staphylococcus saprophyticus cells is carefully
located on the upper surface of the material and left in contact with it for up to two hours. The
material, together with the cell suspension, is then removed from the dish and the extent of penetration
by cells is determined by culturing the aqueous contents of the Petri dish in nutrient medium. In
principle, the test is similar to those laid down in the Pharmacopoeia Helvetica (6) and in the
Pharmacopoeia of the German Democratic Republic (7) for the impenetrability of plastic containers
towards microorganisms. The time of contact between the barrier and the culture of test organism in
the container tests is, however, appreciably longer than two hours, presumably with the intention of
allowing time sufficient for growth to penetrate across a continuous column of liquid joining the two
sides of the barrier.

A test of similar design has recently been officially adopted in Germany for use in specifying
‘sterilization paper for bags and tube packings’ (8). The DIN test method uses Staphylococcus aureus
cells in water suspension (≮ 107 cm−3) as the microbial challenge. Five drops of cell suspension are
placed individually on each of five replicate sterilized samples of paper (5 cm × 5 cm) and allowed
to dry in air under normal laboratory conditions. The underside of each paper sample is then placed
in contact with the surface of a blood agar plate for a period of five seconds and microbial
penetration is assessed by observation of surface growth following appropriate incubation.

In common with other tests of this same general type, the DIN ‘wet’ test findings are greatly
influenced by the wetting properties of the test material and, in effect, the test may well measure
water-repellancy properties of the material rather than microbial penetrability. In practice, running
the test has also revealed a number of technical difficulties that are not catered for in the official test
description. An example is the variability in the contact between the underside of the sample ofSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



material and the agar surface because of deformation of the sample during sterilization and drying.
The test described by Hunter, Harbord, and Ridett (9) is illustrative of those done on materials

using a gas as carrier of the test organism. In this test, a ‘mist’ of particle size varying between 1 and
10μm, prepared from an aqueous suspension of Chromobacterium prodigiosum is generated in air on
one side of a test sample of material (10 cm dia.). A negative pressure is applied to the other side of
the material, thereby drawing the contaminated air against the test barrier. Those organisms that
penetrate it are seeded on the surface of a nutrient agar plate by means of a slit sampler and are
subsequently detected as colonies after appropriate incubation.

The above example serves to point out two design features common to several other similar tests.
Firstly, the test organism is easily recognized, so that incorrect interpretation of results due to chance
contamination is minimized, and secondly, cells of the test organism are relatively small, thereby, on
the face of it, presenting a rigorous challenge to the material under test. However, the challenge here,
and in many other tests too, is actually a ‘mist’ containing the test cells, which can only mean that the
stopping power of the barrier under test is set by the properties of the ‘mist’ droplets (dimensions,
charge, shape, etc.) and not those of the microorganisms. Furthermore, the existence of a ‘mist’
implies that the atmosphere being drawn through the barrier is saturated with water vapour, a
condition generally unlike that encountered under normal storage.

It is worth mentioning here that certain of the test methods aimed at examining product integrity
are also open to question on similar grounds. Often these tests involve tumbling or vibrating sealed
packaged products in atmospheres contaminated with cells mounted on talc or some other insoluble
support. Penetration is then scored by testing the contents for sterility in the usual way. (Alternatively,
a tray of culture medium, enclosed in a simulated package, is exposed to a dispersion of contaminated
talc in circulating air; penetration is then scored directly with little risk of obtaining ‘false positive’.)
Again in these tests, the challenge is somewhat unreal since the penetration of the package is to a
large extent a function of the properties of the support and not of microbiological contaminants.

The recent German standard for ‘sterilizationpaper’ also includes a so-called ‘dry’ test which is
said to complement the test employing cells in water suspension outlined above (8). While not
actually locating dried microorganisms in a gaseous fluid for challenge purposes, the test may be
considered here, because of similarities in design, with those aimed at examining product integrity. A
circular sample of paper (41 mm dia.) is located between appropriate gaskets over the mouth of a
standard laboratory glass bottle using a screw cap in which a 31-mm circular opening has been
machined. After steam sterilization of the assembled bottle, a fixed quantity of silica powder of
specified particle size, contaminated with spores of Bacillus subtilis (≮ 106 g−1), is spread over the
surface of the test sample of paper. The assembly is then warmed to 50°C and cooled to 10°C to
generate pressure differences across the test sample. This warming and cooling cycle is repeated a
further four times. Following the fifth cycle, the bottle is appropriately incubated. Ten such
assemblies form a single DIN ‘dry’ test. Microbial penetration is indicated by the presence of
Bacillus subtilis colonies on the surfaces of the nutrient agar medium. Again, the test is not fully
defined in the DIN specification and, in practice, this could result in wide variations in the
performance of critical procedures from laboratory to laboratory.

Recently, Schneider (10) has presented a critical review of the principal microbiological tests that
are performed on porous packaging materials. It is clear from this review that most tests are
simplistic in design and empirical in regard to choice of test conditions. Consequently, they are notSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



necessarily discriminating in respect of assessing the barrier efficiency of materials towards the
passage of microorganisms, which in turn means that they are of unknown value in indicating the
performance of the packaging material in maintenance of product sterility.

Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



A Quantitative Approach to Assessing Microbial Penetrability
The present status of tests of penetrability of packaging materials has led us to the belief that there is a
real need for an improved evaluation method. On grounds of relevance alone, it is evident that the test
method must employ as its challenge airborne microorganisms.

Design Considerations
A microbiological test must, by necessity, be destructive and it has therefore to be performed on only
a fraction of the material under examination. The fraction has to be a representative sample of the
whole material. Furthermore, the test must be designed for use with relative ease and rapidity.
Clearly also, the design must encompass variables associated with the conditions challenging the
packaging material in practice. Certain specific problems associated with the design of a quantitative
test may be considered under the following headings:

Nature and production of the challenge
In view of the diversity of microorganisms present in the environment, it may be necessary to
employ more than one type or species of organism. Certainly during development work,
comparison will have to be made between the penetration achieved by different organisms under
given test conditions. In choosing an organism, due regard must be given to nonpathogenicity, ease
of production and recognition, type, viability, average cell size and size distribution. An airborne
challenge may consist of microorganisms contained within droplets of aerosol, located on solid
particles, or as a dispersion of discrete cells in air. A challenge made up of droplets or solid
particles may be rejected on the grounds outlined above. For a given species of organism, a
dispersion of discrete cells is made up of particles of the smallest possible dimension and is very
likely the most rigorous challenge that can be devised. Logically, such a dispersion is the
challenge of choice. The production of a dispersion can be achieved by aerosolisation of a liquid
suspension of cells into droplets of sufficiently small size that on expansion into the gaseous fluid,
‘instantaneous’ evaporation of the liquid droplet occurs, leaving the discrete cells suspended in
the gas. Dispersions so formed are referred to as ‘dry’. Nebulisers restricting droplet size and so
giving rise to dry dispersions have been described (11).
There is some evidence to suggest that cell concentration in the challenge is important in
penetration measurements, so that the influence of this variable may also have to be examined in
detail.

Presentation of the dispersion
In any determination of penetrability, there is a need for a driving force to present the dispersion
to the sample of material under test. The easiest driving force to control and reproduce is pressure
difference.
Ideally, in using difference in pressure as the driving force, the size of sample under test should be
variable, since this will permit variation of the overall flow rate through the test material for a
given pressure difference. The design of the test method may be such that pressure difference is
held constant, and so, for a given material and sample size, the overall flow rate through the
material is effectively fixed. However, for different materials, because of differences in resistance
to gaseous fluid flow, different flow rates will occur. If flow rate is a determinant of penetrability,
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then clearly such differences are critical. In such circumstances, the test should be designed to
allow variation in pressure difference in order to exercise control over flow rate.

Estimation of extent of penetration
Generally, in order to estimate the extent of penetration, determinations have to be made of the
numbers of microorganisms in the dispersion both upstream and downstream of the sample of
material under test. A critical requirement is then the ability to recover accurately and with a high
degree of precision microorganisms from a known volume of the gaseous carrier. In practice, the
collecting device must be able to recover microorganisms from a gas flowing over a wide range
of rates and containing a wide range of concentrations of microorganisms. The characteristics,
specifications and performances of various devices for collecting microorganisms have been
detailed (12) and the all-glass impinger would appear to be particularly valuable in airborne
microbiological testing where flow rate is a variable.

Apparatus and Methods
A previous communication gave a schematic of the rig, designed and constructed in our laboratories
specifically to measure the penetration of different types of porous packaging materials by airborne
microorganisms (13). The challenge to the sample of packaging material is a dispersion of spores of
Bacillus subtilis NCIB 8056 in air, presented to the material under rigorously controlled test
conditions. To determine the extent of penetration, estimates are made of the number of spores per unit
volume of the spore dispersion directly upstream and downstream of the test sample. With the present
rig and methodology, amongst the experimental variables that can be changed at will are
concentration of spores in the challenge dispersion, volume of dispersion drawn through the test
sample, the temperature and relative humidity of the dispersion, the type and size of the test sample
and the pressure difference across the sample. Penetration of a particular sample of material for a
given set of experimental conditions is derived thus:

To date, our work has focussed on the study of the relationship between penetration and the rate at
which the spore dispersion is presented to the porous packaging material. For convenience, this rate
has been designated ‘challenge flow rate’. Challenge flow rate has been varied between 1cm3 min−1

cm−2 and 1dm3 min−1 cm−2 material sample by changing the pressure difference across the test
sample; other experimental variables have been held constant.

Typical Findings
Over the past three years, a substantial number of different porous packaging materials have been
examined using the methodology based on challenging with an airborne spore dispersion. Challenge
flow rate has been shown to have a marked effect on the extent to which spores penetrate a given
packaging material. For all medical grade papers tested to date, curves relating penetration (P) and
flow rate (V) exhibit certain common features that are typified by the findings presented in Figure 1.
Over relatively low challenge flow rates, penetration decreases progressively with increasing flow
rate; at flow rates greater than a critical rate, which is specific for the paper under test, penetrationSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



increases with further increase in flow rate. These findings clearly demonstrate that such papers are
not absolute barriers to airborne microorganisms, and they also show that there are some very subtle
effects of the rate of presentation of the spore dispersion to the test material on the extent of
penetration. The different effects of changing challenge flow rate on penetration, seen over different
domains of flow rate, can be generally explained if we consider the material under test as a filter,
fibrous or porous, opposing the flow of a dispersion of particles of given mass.

Figure 1. Typical relationship between penetration (P) and challenge flow rate (V) for a medical
grade paper examined under fixed test conditions.

In general, fibrous filters are relatively deep with inter-fibre distance large in comparison with
fibre diameter. A reasonable approximation of the arrangement of fibres within a fibrous filter is the
so-called ‘staggered array’ (14), depicted in Figure 2 (l.h.s.). Parallel fibres of circular cross-section
can be thought of as lying in an orderly fashion, perpendicular to the fluid flow. The structure of a
porous filter, in contrast, is approximated by a capillary arrangement (15), consisting of circular
capillaries spaced equidistantly and running parallel through the depth of the filter [Figure 2 (r.h.s.)].

Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



Figure 2. Models of the structure of fibrous and porous filters. Arrows depict the direction of fluid
flow.

In considering the capture of flowing particles in a fibrous filter, it has been proposed that each
individual fibre may be regarded as an independent entity isolated from the rest of the filter (16). This
has allowed the behaviour of the filter under conditions of fluid flow of varying rates to be analysed
in terms of flow around a given fibre. The flow of a fluid around a single fibre is defined by
streamlines as shown in the upper diagram of Figure 3. For particles following streamlines that fall
outside the boundary of the potential diameter of a given fibre (Y), there is essentially no likelihood
of capture on that fibre, irrespective of flow rate. For particles in streamlines within the boundary of
the fibre diameter, capture occurs when the particles, driven by inertia, leave the fluid flow, impact
upon the surface of the fibre and are retained there. In these circumstances, the probability of particle
capture depends upon flow rate, and the maximal distance separating streamlines, which possess
particles that leave the streamlines and collide with the fibre, defines the effective diameter of the
fibre (y). For a given flow rate, this diameter is determined by the so-called critical trajectory of the
particle, which is defined as the limiting pathway taken by a particle resulting in collision of the
particle with the fibre. Obviously, the nearer the value of y/Y is to unity, the greater the likelihood of
particle capture, which in turn will result in lower levels of penetration. As flow rate increases, this
ratio approaches unity (lower diagrams in Figure 3).
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Figure 3. Diagrammatic representation of the process of particle capture from a fluid dispersion
flowing around a single fibre.

The process of particle capture on a porous filter is represented in Figure 4. Particles, driven by
inertia, fail to keep to the streamlines of fluid entering the individual capillaries and are deposited on
the solid intercapillary surface of the filter. On increasing flow rate, the radius of the critical
trajectory tends towards the effective radius of the pore, and the value of y/Y correspondingly
approaches unity. Increasing flow rate results, therefore, in increasing particle capture.

The events described above for particle capture in fibrous and porous filters are clearly the basis
of an explanation of decreasing penetration of paper materials by dispersed spores with increasing
flow rate, seen at relatively low flow rates (Figure 1).
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Figure 4. Diagrammatic representation of the process of particle capture from a fluid dispersion
flowing through a capillary within a porous filter.

The explanation of the increase in penetration seen at flow rates above a critical level is sought in
terms of the energy of association between the particle and the paper fibres. At relatively high flow
rates, inertial forces associated with the fluid may be increased to a point where they exceed the
forces of adhesion maintaining the particles on the surface of the fibre. Previously captured particles
will then return to the fluid flow and, in so doing, will be free again to penetrate the paper. This
phenomenon, called re-entrainment, is known to occur in the paper/spore system. Alternatively, the
inertial forces associated with the particles at high flow rates may be large enough to cause particles
to impact on and ‘rebound’ from the surface of the fibre, thereby re-entering the fluid flow. Both these
events, connected with high flow rates, could lead to increased particle penetration. They could then
be a basis of a rationalisation of the abrupt change, seen at a critical flow rate, from an inverse
relationship between per cent penetration (P) and challenge flow rate (V) to a direct relationship
(Figure 1).

The form of the curve relating P and V at relatively low flow rates can best be represented by the
expression

A logarithmic transform of the latter yields a simple linear equation

in which K and P′ are constants. The value of-K is the slope of the plot of ln P vs. ln V at low flow
rates and P′ is an estimate of the per cent penetration when the challenge flow rate takes a value of 1
dm3 min−1 cm−2 sample. P′ is derived from the intercept of the y-axis and the extrapolate of the line
(Figure 5).
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Figure 5. Plot of ln P vs. ln V for data presented in Figure 1, showing an inverse relationship between
P and V. The plot demonstrates the derivation of constants K and P′, given in equations (1) and (2).

The constant K is a measure of the changing rate of decrease in penetration with increasing flow
rate, a high value of K being indicative of a structure conducive to efficient barrier properties. The
name given to K is the penetration rate constant. The constant P′, being the predicted level of
penetration for a given paper at a fixed flow rate, is designated the specific penetration. The value
taken by P′ is low when the packaging material acts as an effective barrier. A recent communication
gives values of K and P′ for a range of commercially available medical grade papers (13).
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Parallel Studies of Microbial Penetrability
The usefulness of the quantitative approach described above is illustrated by the findings presented in
Table 1. Here, values of penetration rate constant (K) and specific penetration (P′) are listed together
with DIN test findings for a range of different medical grade papers (a to f). The table also gives the
results obtained with two papers that were included as ‘Controls’.

These Controls were used to standardize the DIN test methodology. Control 1 was a paper that,
when examined in the laboratory where the DIN test was originally devised, passed the test, whereas
Control 2, when examined in similar circumstances, failed. The tabulated findings for these two
papers demonstrate that our DIN test methodology is comparable to that of the standard laboratory. It
is noted, however, that the failure of Control 2 in the ‘wet’ test depended solely on the presence of an
‘uncountable’ area of growth appearing at a single location on only one test sample of paper. The
remaining 24 locations gave no growth and therefore it would appear that the defect responsible for a
breakdown in the barrier properties of this paper, and its failure, occurs erratically and not regularly
across the paper. Also, Control 2 passed the ‘dry’ test, a fact that supports the above notion.
Nonetheless, the responses of Controls 1 and 2 encouraged us to proceed with the examination of the
other papers by the DIN test methods.

Table 1
Findings from parallel microbiological penetration studies performed on six different medical grade
papers

All six test papers, manufactured to either DHSS specification for ‘paper for bag, sterilization’ or
DIN specification for ‘sterilizationpaper’, passed both the ‘wet’ and ‘dry’ DIN tests. However, it
seems that papers a, b, d and f met the pass criteria more readily than c and e. In fact, paper e wasSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



just on the limit of compliance and it is possible that it was used to set the arbitrarily chosen pass/fail
level.

A major inference that may be drawn from the DIN test results (‘wet’ and ‘dry’) for the six test
papers is that several of them (a, b, d, and f) might be thought of as being absolute barriers to
microorganisms. They show no growth which suggests zero penetration. This inference is not in
keeping with the findings obtained on challenging the papers with an airborne dispersion of spores;
penetration is seen at all values of flow rate examined. Furthermore, the different papers take
different values of the constants K and P′. We note that an inverse correlation exists between the value
of the penetration rate constant (K) and the specific penetration (P′), and that the combination of a
high value of K and low value of P′ is indicative of effective barrier properties. When this combined
measure of effectiveness is applied, the barrier efficiency of the test papers ranks in the order
e<b<(cd)<a<f over a wide range. On the other hand, ranking efficiency according to the response to
the DIN test would put the papers in the order e<c<(a b d f). These two rankings are clearly not
relatable, particularly in view of the position of paper b in the group showing zero penetration when
actually b exhibits poor barrier properties to a dispersion of airborne spores.

The set of findings presented in Table 1 demonstrates the insensitivity of the DIN test (‘wet’ and
‘dry’). It fails to separate the six test papers in respect of their microbiological barrier properties.
The papers were made to either DHSS or DIN specification, and all passed the arbitrarily chosen
pass/fail levels of the DIN tests. The same six papers, however, showed markedly different barrier
properties when challenged with a dispersion of airborne spores. The different behaviours under test
are in accord with known differences in paper structure that could affect barrier efficiency (e.g.
grammage, thickness, fibre density, fibre diameter). In our view, present findings illustrate the
promise of airborne challenge testing for quantitatively describing barrier properties of porous
packaging materials. Such descriptions are measures of the ability of materials to stop the passage of
microorganisms, which, in turn, could define their effectiveness to maintain product sterility in the
field.
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DISCUSSION
SESSION V

– Part 1
Q. by R.A. Anderson – Chairman

May I put a question to Prof. Tallentire. The question is one that was put to an earlier speaker,
concerning responsibility for the quality of the packaging materials, viz. whether the responsibility
lies with the supplier, or whether it is the user or manufacturer of that packaging material. Do you
have any additional comment?
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A. by A. Tallentire – UK
As an academic, I am not really concerned with the subject, but I would say that it should be the

supplier and not the user. The supplier has a responsibility to sell material of a correct quality for an
intended use.

_______________
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Q. by F.E. Halleck – USA
Prof. Tallentire, the DIN method (the ‘wet’ and ‘dry’ test methods) and the methods you have

developed in your laboratory for evaluating papers are based on single-web materials. How does that
equate to the standards in hospitals, where you should have double layers in order to deliver the
product aseptically to a sterile field? The practice in hospitals is to use double layers of packaging
materials, so as to deliver the product aseptically to a sterile field. The outside layer is usually
discarded. How does your test method relate to that practice?
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A. by A. Tallentire – UK
It is not a test, and I am not suggesting that what we are doing is a test. What I am suggesting is that

we are characterizing the penetration properties of materials to microbial challenges, but it is not a
test. What we can do is that we can grade papers. At the moment, we have not chosen to set a
particular standard of penetration. That is number one priority. If we wish, we could readily do the
test that was mentioned. We could, in fact, put two layers of material in our experimental rig and I
would predict that the extent of penetration for a low challenge would, in fact, be equal to the
penetration of the first layer of web, provided that the penetration rate was the same.

_______________
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Q. by F.E. Halleck – USA
With your knowledge of packaging, which is based on testing, do you feel that the industrial

manufacturers of medical devices are doing a disservice to hospitals by providing only a single layer
as a sterile barrier, which is the outside layer, whereas the hospital must provide two layers for their
packaging?
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A. by A. Tallentire – UK
It is time we got better webbed materials for packing commercial sterile medical devices.

_______________
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Q. by B. Evers-Buckland – Australia
Prof. Tallentire, I have two short questions. First, have you done any work with coated papers, or

have you done any work with any type of coated papers where you are going to get a resistance to
your flow rate?

The second question is: with an increase in humidity for your test method, what would you expect
the graphs to do, say if you raised the humidity from 50% to 60%?
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A. by A. Tallentire – UK
We have done work with coated papers. You get differences in flow rates with coated papers, but

the flow rate that I am plotting is, in fact, the real flow rate, i.e. the rate of penetration of the test
material.

I do not know the answer to your second question, because we have not done such a test, but I
think that I could make a prediction. As I pointed out, we are in the very early days in this whole
exercise, and I would suggest that with an increase in relative humidity there would be an increase in
fibre diameter. In those circumstances, the web would become a more effective barrier.

_______________
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Q. by J. Nisbet – Australia
I would like to ask Frank Hebbard a question. As contract sterilizers, we are concerned with

minimizing ethylene oxide residue in therapeutic devices after treatment. Could you outline the
methods by which hospitals ensure minimum levels. How are these levels measured and what safe
limits are acceptable?
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A. by F.L. Hebbard – Australia
I cannot really answer your question satisfactorily. We are concerned with minimum levels. As I

stated earlier, ethylene oxide sterilizers are approved for use in hospitals and are restricted in their
location and are fitted with aeration systems. The hospitals are advised, but we have no control of
what they do. However, we do advise hospitals to aerate these units and/or the load. We have no
methods of testing within hospitals to measure actual residues. We do have legislation and regulations
related to occupational health concerning aspects of ethylene oxide residues in loads after removal
from sterilizers, which are being enforced.

_______________
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Q. by J. Brewer – Australia
I have a question to Prof. Tallentire. When you are plotting flow rates vs. permeability, or cell

counts, you get that inflection point. What is physically happening at that point, and is it consistent
from sample to sample?
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A. by A. Tallentire – UK
Yes, very much so. It is consistent with each paper, but its location varies from paper to paper.

The reason is twofold. One is the process of entrapment. At low flow rates, you get organisms
adhering to the surface of the fibres, and that is where they are captured. At high flow rates, you tend
to get inertial forces of gaseous fluid exceeding adhesive forces of the organism to the fibre surface,
which results in pulling them off. So, it is really an artefact. We have actually proved that this occurs.
The other possibility is that forces of inertia exceed adhesive forces, and as organisms impact onto
the surface of the fibres, they rebound.

_______________
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Q. by R. Croft – Australia
Prof. Tallentire, just following an earlier question on relative humidity, you said, you were in the

embryonic stages of the studies. Have you any proposals to do a ‘worse case’ study, viz. with higher
temperature and humidity?
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A. by A. Tallentire – UK
About four years from now, I believe.

_______________
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Q. by R.A. Anderson – Australia
There was an earlier question which I believe was to Dr Dodson, who queried how well one can

determine the nature and extent of bioburden on some of these materials. Mr Whitbourne referred to
this as a fairly central part on one of the validation schemes, and you did not comment on that. Can we
get a comment from you.
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A. by J. Whitbourne – USA
Well, the bioburden is, if you are talking about a plastic material, difficult because you will never

get more than perhaps 10-20% of what is there. However, if we are talking about a sterilization
process, we are of course trying to kill the microorganisms present. Therefore, it does become
important to measure as much as possible the bioburden level. I cannot really give you a quick
answer, because there are a lot of things that need to be discussed relative to your question. However,
in my opinion, a great deal more emphasis needs to be given to many sterilization processes, ethylene
oxide in particular, radiation to some extent, and certainly low temperature heat processes, regarding
the innate resistance of the product. I have seen a number of sterilization processes where the
resistance of the product was far greater than that of a biological indicator. Although I recognize that
there is a certain amount of disagreement regarding bioburdens, and because we do not always get
exact numbers, it nonetheless is of great importance.

_______________
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Q. by F.E. Halleck – USA
Mr Whitbourne, you made a comment that the overkill method was more economical than the

bioburden, which I agree with whole-heartedly. I would like to have you expand this subject.
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Q. by J. Whitbourne – USA
Bioburden studies are done to look at the manufacturing environment. They give information on

how clean the environment is. The overkill method is certainly much cheaper and depends on the type
of processing, especially with steam or with dry heat. If you can use the high temperature, and can use
a spore strip that has B. stearothermophilus on it for steam sterilization, or B. subtilis for dry heat,
the overkill method is a much simpler, easier, and cheaper to measure the process performance.

_______________
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Q. by G. Nelson – Australia
A question to Prof. Tallentire. It was fascinating to see the work that had been going on to try and

define test methods for the barrier properties of paper. I suspect, the work has probably taken a long
time. It was most interesting on two points. First, to be absolutely specific that certain papers are
better than others as a barrier for microorganisms. Secondly, that the degree of penetration was higher
at the low flow rates. I really would not have anticipated this on thinking about it prior to your results.
I would like to go on to ask two basic questions. One is related to time. In Australia, there is a big
problem, as there is worldwide, in trying to define a physical property of the paper to put in a
standard that will give a satisfactory measure of barrier properties. I would ask you, how long do you
think it would be in continuing your work, for this to be achieved.

The second question is related to future development of improved papers. Do you think, it will be
possible from the work you are doing to define all the properties, or the majority of the properties of
paper, to be able to tailor-make an even better paper in the future?
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A. by A. Tallentire – UK
In answer to your first question, I retire in 15 years time and I believe, this will just keep me

going, so I have no idea. I am going to continue on at the present rate and enjoy what we are doing.
To answer your second question, the whole purpose of our programme of work is to get to a point

where we will be able to go to the papermaker and say that this is how to make paper if it is to be an
effective barrier.
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Sterilization Process Technology – Part 2
Introduction to Session
Anna J. Skopek

The following papers will deal with aspects of gamma irradiation sterilization.
Gamma rays have been successfully employed for sterilization of medical supplies and devices

for more than twenty years. As a sterilizing agent, gamma irradiation offers a number of advantages.
Some of these are:

–   ability to control the process by physical means
–   compatibility with a wide range of materials
–   enormous penetrating ability
–   freedom in utilization of packaging materials showing thermal instability
–   low chemical reactivity
–   high reliability and easy adoption for continuous processing.
Various international and national codes and guidelines have been developed to specify regulatory

requirements and to provide technical guidance in this field. The activity of the International Atomic
Energy Agency resulted in the formulation of a Recommended Code of Practice for the
Radiosterilization of Medical Products. One of the statutory tasks of the International Atomic Energy
Agency is to ‘accelerate and enlarge the contribution of atomic energy to peace, health and prosperity
throughout the world’. In accordance with these objectives, the Agency has contributed to the
development of the radiation sterilization technology. Current programme activities, as well as future
plans of the International Atomic Energy Agency in this field, are outlined by Ramendra Mukherjee.

Appendix A of the Code of Good Manufacturing Practice for Therapeutic Goods in Australia
covers special provisions concerning the procedures to be applied in radiation sterilization of
therapeutic goods. The radiation sterilization provisions are based on the principle that the primary
manufacturer bears the responsibility for the quality of goods, including sterility.

The operator of the radiation facility bears the responsibility for delivering the required dose of
radiation. The provisions are based on the use of a prescribed minimum absorbed radiation dose of
2.5 Mrd. Experience has shown that this dose is satisfactory for sterilization of medical products.
Nevertheless, it is the responsibility of the primary manufacturer to validate the prescribed absorbed
radiation dose. When validation has been carried out, and when the factors involved are consistently
under control, routine sterility tests need not be carried out and products may be released on
dosimetry data.

Gamma sterilization process development requires a multidisciplinary approach: microbiological
validation, dosimetry, and product and package integrity evaluation. Microbiologists have been
engaged in determination of the inherent radiation resistance of microorganisms and in investigations
of the influence of a variety of environmental factors on microbial radiation resistance.

Knowledge of the microbial burden prior to sterilization is a necessary prerequisite in the
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determination of the margin of safety and efficiency of a commercial sterilization process. An
accurate assessment of this safety factor becomes increasingly important when sterility release is
based on dosimetry data. In order to validate the sterilizing dose, many workers have studied the
inactivation of microorganisms by depicting dose-survival curves. The inactivation of bacteria by
irradiation is a negative exponential process. At higher radiation doses, the fraction of survivals
approaches zero. Theoretically it never becomes zero.

The sterilizing dose will therefore depend on the initial degree of contamination and the final
probability of survival that can be tolerated.

Pamela Wills will discuss investigations related to process development and validation carried
out by the Australian Atomic Energy Commission, Australian industry, and research institutes in
South-East Asia and the Pacific region.

Until a few years ago, a sterilizing dose of 2.5 Mrd had been generally accepted in many
countries, including Canada and the United States. This dose was initially based on experience
showing that products could be safely and effectively sterilized with that dose.

Recent scientific advances and accomplishments in the field of gamma irradiation in North
America have suggested that irradiation doses other than 2.5 Mrd may be equally acceptable.
Advances in understanding of the kinetics of the gamma sterilization have supported changes in the
process validation methodology, and have reduced problems associated with sterility testing. The
advances have arisen out of the efforts of individual scientists as well as the committee of the
Association for the Advancement of Medical Instrumentation (AAMI). The committee was formed in
1976 to study dosimetry, process control, and methods for dose determination, and to develop
voluntary guidelines for the irradiation sterilization of medical devices. During a four year period
(1976-80), new dose-setting strategies were developed and statistically evaluated using computer
simulation. The mathematical models are based on a natural D10 resistance phenomenon of
microorganisms, the nature of the article to be sterilized, and a desired sterility assurance level.

The new strategies involve dosimetry release, and are free from difficulties involved in
subculturing of individual bioburden organisms and in individual determinations of D10 values. They
are accurate, precise, provide reproducible results, and do not require microbiological
experimentation and techniques beyond the capabilities of present industrial microbiological
laboratories.

In 1980, the somewhat arbitrary 2.5 Mrd dose was, in some instances, reduced as a result of the
application of new scientific dose-setting procedures. John Masefield will discuss the current North
American practices in gamma sterilization.

A generally accepted practice is to apply a single sterility assurance level of 10−6 to all medical
devices. In North America, this single sterility assurance level has been substituted by a range of
levels, depending on the end use of the product. In Canada, this principle is known as the
Microbiological Safety Index (MSI). It has been argued that products which do not come in direct
contact with a patient, or do not compromise the natural defence barrier of a patient, do not require
the same degree of sterility assurance.

A more flexible approach to a sterilizing dose would lead to a broadened application and
improved productivity of gamma sterilization processes. While the future rate of expansion and
growth of gamma irradiation sterilization will vary from country to country, it is obvious that the
main potential for growth will remain in the medical products area.
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Introduction
The programme activities of the International Atomic Energy Agency (IAEA) for over fifteen years
have contributed to the development of the technology and the practices for radiation sterilization of
medical products in its member states. Particular emphasis has been placed in these IAEA
programmes to meet the needs of the technologically less advanced countries to help upgrade the
standards of their existing health-care services through an improved provision of sterile medical
supplies for safe clinical use. These programme activities have been implemented through: (a)
support of relevant research to generate necessary information for suitable practices in keeping with
the local conditions, (b) organizing scientific meetings and training courses for free dissemination of
technical expertise and information, (c) providing technical assistance to the developing member
states in the form of advisory services by experts, pre-investment surveys, installation and
commissioning of irradiator facilities, and the build-up of the technical manpower and infrastructure
for a sustained operation of the sterilization practices, (d) issuing scientific publications, manuals,
and guidebooks in the fields concerned, (e) particular assistance in the preparation of a recommended
international Code of Practice to facilitate standard sterilization processes that could lead to high-
quality, safe, sterile medical products.

The parameters involving an accurate delivery of the recommended sterilizing radiation dose to
the product are among the most important factors involving sterilization control. The IAEA-
sponsored, internationally co-ordinated high-dose intercomparison/calibration programme to provide
dose assurance aims to fulfil this objective. In addition, this programme has developed a series of
dosimeters that can be used in the product during normal operation of an irradiation facility, in
parallel with an operator’s routine system, to serve as a mutual control standard.

Promotional activities that help to contribute towards the attainment of a controlled sterilization
method will be detailed in the paper.
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IAEA Objectives
It is one of the statutory tasks of the IAEA to accelerate and enlarge the contribution of atomic energy
to peace, health, and prosperity throughout the world. In keeping with these broad objectives, and
with particular regard to the welfare needs of the developing member states, the Life Sciences
programme of the IAEA has been designed to promote the development and extension of relevant
nuclear techniques and technologies to foster early beneficial returns in the fields of medicine, public
health care, and related industries.

There are grave inadequacies in the public health-care standards of most of the technologically
less advanced countries of the world. The situation in these densely populated developing countries
may be better illustrated when their unfavourable doctor-to-population ratios of some 1:100 000 is
compared with that in some of the most advanced countries with one doctor for every 500 people, or
less. These developing countries experience other adverse health-care situations in having a limited
number of hospitals with inadequate facilities and support staff for sterile medical supplies for
clinical services. A great majority of the population has to rely upon mobile dispensaries and/or
camp health centres. In such circumstances, the patients are likely to encounter nosocomial diseases
through cross-infection from nonsterile supplies. Problems such as this could be largely overcome by
the provision of ready-to-use sterile medical supplies.

The development and beneficial applications of large radiation sources for industrial use has long
been another objective of the IAEA-sponsored programme for the member states. Progressive
advances since the early sixties in the technology of the large irradiator sources using 60Co for
sterilization of medical supplies is a relevant area in the programme’s activities. At present, radiation
sterilization of medical products constitutes next to power generation one of the most important
industrial uses of large radiation sources (1). Moreover, it is indeed heartening to note that the host of
this important Symposium has been among the pioneers of the beneficial application of atomic energy
from as early as the late fifties. The continuing trends have resulted in a worldwide inventory of large
commercial-scale gamma irradiators engaged in the service of the sterilization of medical supplies.
These facilities are distributed throughout 36 countries and have an estimated installed capacity of
about 100 million curies of 60Co (12). The high level of efficacy of radiation sterilization methods,
combined with ease of handling and control, reliability, a unique suitability for use on substances
susceptible to heat and chemical agents, and, above all, the hygienic advantages inherent in prepacked
hermetically sealed sterile items, achieves the objectives.
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Rationale for Promotional Efforts in the IAEA
A recognition of the potentials of radiation sterilization technology and the practices to cater for the
problems and pressing needs of health-care services in the developing countries have led the IAEA to
become involved in promotional activities over the past 16 years. The programmes have contributed
to the development of the operation and control of radiation sterilization practices in the member
states who have sought IAEA assistance. The introduction of this technology to as many as ten
developing countries in Europe, the Middle East, and Asia is attributed to such IAEA-sponsored
activities. IAEA-sponsored programmes have also played a supplementary role in the introduction of
the technology in many other national developments.

The basic nature of the approach of the IAEA programme consists of a transfer of relevant
technical experiences for adaptation to the socioeconomic environment of the recipient countries in
order to foster an early beneficial return. An integral part of this is the aim to establish an
infrastructure of local trained technical personnel.
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IAEA Research Support and Co-ordination
The early phase of the IAEA programme for development of the practices of radiation sterilization of
medical supplies in the member states primarily dealt with institutes in European countries. This
period spanned the late sixties and the early seventies. In co-ordinating research efforts, a number of
the leading countries in the field of application, such as UK, USSR, Federal Republic of Germany,
France, and the Scandinavian countries, collaborated with several European countries that were new
in the field. Table 1 lists the countries in Europe that received technical assistance under the IAEA-
supported programmes. Most of these countries have further elaborated the sterilization practices
under their national development programmes and have now acquired commercially operating
irradiator facilities with defined national criteria and regulations. The international recommendations,
as formulated by the joint IAEA/WHO Working Group of experts (7), have facilitated these
developments.

Table 1
IAEA-supported activities on radiation sterilization practices in Europe and in the Middle East
Country Large-scale

irradiation facilities
Research support and

coordination
Expert assistance on technical, economic, and

marketing services
Training of personnel and

fellowships
Bulgaria +
Czechoslovakia + + +
Denmark +
Egypt +b +
Greece + + +
Hungary +b + + +

Israel +a +
Poland + +
Turkey +
Yugoslavia +b + +

a – UNDP/IAEA-supported expert assistance project
b – Co-60 gamma irradiator and the associated services provided under the UNDP/IAEA project

 
Encouraging developments in technology in North America, Europe, and Australia, together with

the positive impacts of the IAEA-co-ordinated activities, have stimulated interest by countries in Asia
and the Far East during the early seventies (Tables 2 and 3). Following the successful commissioning
of the 60Co radiation facilities in India and South Korea, both through the support and joint venture of
UNDP, IAEA, and the governments concerned, interest in this field of beneficial nuclear applications
has extended to the Philippines, Indonesia, and Thailand. In addition, some small scale applied
research activities relevant to the practices and process control have also been triggered off in other
countries of the region, such as Pakistan and Bangladesh, under the IAEA Regional Co-operative
Research Agreement (RCA) programme.
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IAEA-supported activities on radiation sterilization practices in Asia and in the Far East
Country Large-scale irradiation

facilities
Research support and

coordination
Expert assistance on technical, economic, and

marketing services
Training of personnel and

fellowships
Bangladesh + +
Burma + +
India +a + + +
Indonesia + + +
Korea
(South) +b + + +

Pakistan + +
Philippines + +d +

Thailand +c + + +

a, b – Co-60 gamma irradiators for sterilization of medical products under the UNDP/IAEA project
c     – Co-60 gamma irradiator used mainly for food irradiation
d     – Detailed pre-investment market survey of potential medical products has been completed under

the UNDP/IAEA project
 
While introducing the technology in geographical areas, such as tropical countries of Asia, best

possible use should be taken of the resources of knowledge (4) (Table 2). Nevertheless, striking
differences in the ecological and the environmental hygienic conditions of the tropics, together with
the types and priorities of the medical supplies, may, however, impose certain limitations on the
feasibility of a direct extrapolation of available technical information and criteria for use (2). The
situation may, therefore, necessitate generation of some relevant technical information under local
conditions to ensure the establishment of effective and safe practices relevant to their local medical
manufacturing industries and the environment. The Agency’s regional co-ordinated research
programmes on this subject (Tables 1 and 2) have been designed to meet these objectives.

The IAEA-co-ordinated programme of research on radiation sterilization practices suited to local
medical supplies for countries in Asia, the Far East, and the Pacific carried out surveys on the role of
bioburden characteristics on the nature of the sterilization practices. Furthermore, a comparison of the
involved radiation facilities at the institutes of the participating countries, with regard to the
efficiency of sterilization and the standardization of the methods for radiation sensitivity evaluation
(D10 value), was undertaken as a part of the calibration process. This exercise served as a helpful
guidance for investigators relatively new in the field. This co-operative study was made possible by
the generous help extended by the Australian Atomic Energy Commission at Lucas Heights, especially
with the assistance of Pamela Wills, one of the co-investigators in the project.

Table 3
Gamma-irradiators for sterilization of medical products established by the joint support of IAEA,
UNDP, and governments

Country Operator Designer
Capacity
(MCi) Date of

commissioning
initial maximal

ISOMED, Bhabha Atomic
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India Research Centre, Bombay H.S. Marsh NE Ltd. 0.12 1.00 1974

Korea (South) KAERI, Korea Atomic Energy
Research Institute, Seoul A.E.C.L. 0.10 1.00 1976

Hungary Debrecen A.E.C.L. 0.25 1.00 1976
Yugoslavia Vinca French CEA 0.20 1.00 1978

Egypt NCRT National Center for
Radiation Technology, Cairo A.E.C.L. 0.40 1.00 1978

Indonesia Badan Tenega Atom Nasional,
Jakarta

60Co supplied by A.E.C.L., equipment by Marubeni
(Japan), shielding pool (local source)

0.22 0.35 1983

Thailand
(Planning
stage)

O.A.E.P., Bangkok 0.20 0.30 1983-84
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Development of Gamma Irradiator Plants and their Process
Control
So far, through the support and involvement of IAEA programme activities, commercial scale gamma
irradiation facilities for the sterilization of medical supplies have been established in India, South
Korea, Hungary, Yugoslavia, Egypt, and Indonesia (Table 3). The setting up of demonstration
facilities in these countries is expected to enable them to intensify further their relevant research,
training, and upgrading of health-care services, thereby enlarging the scope of beneficial nuclear
applications (3).

Upon request, expert assistance has been provided to a number of facilities in member states for
the development of the microbiological control of radiation sterilization (6), including the advice on
monitoring the hygienic standards of the production sites. Assistance, including training of the
technical staff involved, has been given on the microbiological assay (initial counts) of medical
materials prior to sterilization. The microbiological efficiency of the 60Co sources was investigated
and calibrated using standard preparations of B. sphaericus strain C1A and B. pumilus strain E601
(6). Based upon requests from the member states, technical justification, and availability of funds,
some equipment was provided for the various service control laboratories, including microbiology.

Through the services of IAEA experts, as well as the co-ordinated research programmes, steps
have been taken to control the sterilizing efficiency of several irradiation facilities in member states
(5). Such expert services included the development of suitable physical and chemical dosimeters,
their applications to the calibration of the radiation source, and relevant mechanical devices needed
for smooth operation of the facility. Training of local technical staff in the routine dosimetry
procedures is also undertaken through these expert services.
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Dose Assurance for High-Level Radiation Facilities
The correct use of radiation in sterilizing medical products affects the quality and safety of the
finished products direct, which in turn affects patient health. This, therefore, warrants research and
development to establish the efficiency of the radiation dose, so that the processor can use radiation
dosimetry measurements during commissioning and routine operation as a form of quality control to
guarantee the safety and/or reliability of the irradiated product.

Studies carried out under the IAEA-co-ordinated research programme of the Dosimetry Section on
the above objective have helped in the development and evaluation of a series of dosimeter systems
to meet the requirements of high-dose application fields. Some of the promising systems include
alanine (ESR), radiochromic dye, ethanol – chlorobenzene, ceric-cerous sulphate, glutamine
(lyoluminescence), and clear Perspex* (PMMA). Research has also been carried out on the possible
effects of environmental variables, such as temperature, humidity, and storage duration on the stability
and accuracy of the dosimeter readings and their correct interpretation. The availability of such
comparative data on dosimeter systems is a technical base for international dose-assurance service.
This dose-assurance service could create a situation where public health authorities or regulatory
authorities could be furnished with data that serve as a guidance for a decision concerning an
approval of irradiated products.
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IAEA Publications
An essential role of the IAEA towards the promotion of the radiation sterilization practices in the
developing and the developed member states is served through publications of the proceedings of
meetings, as well as reports and technical manuals (Tables 4a and 4b). Meetings have encompassed
diverse problems of practice, which have served as a reference source and a guidance for workers in
the field and for advanced students in universities and training courses. The recommendations for the
relevant manufacturing practices have been utilized by a number of the member states while
formulating their own national regulations and code of practice (7, 8).
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Role of the IAEA in the Regulatory Aspects of the Radiation
Sterilization of Medical Products
The promotional roles of the IAEA have been briefly enumerated in the previous sections of this
paper. The regulatory authority for the safety of the radiation-sterilized medical products belongs to
the Health Department of a country’s government. Accordingly, products should follow specific
controls according to the country’s national pharmacopoeia (7).

However, to facilitate the necessary upgrading of the existing specifications, in the light of the
current developments in the technology and relevant experiences the IAEA organized several
working-group meetings of experts (7, 8). The recommendations of the experts have framed the basis
for an international code of practice that has been published (Table 4a) and is intended for use by
workers in the field of application in member states (7). Furthermore, in view of the rapidly
expanding use of radiation-sterilized medical products in countries beyond the national boundaries of
their production, periodic upgrading of the document might become necessary in the future. The IAEA
wishes to remain responsive to such needs of member states and to developments in the practices
concerned.

Table 4a
Scientific meetings and publications on radiation sterilization of medical products organized by the
IAEA
Title of meeting Date and venue Date of publication

*Application of Large Radiation Sources in Industry [C] 27-31 May 1963
Salzburg 1963

Radiosterilization of Medical Products, Pharmaceuticals and Bioproducts [P] 17-19 January 1966
Vienna 1967

Code of Practice for the Radiosterilization of Medical Products [P] 5-9 December 1966
Vienna 1967

Radiosterilization of Medical Products [S] 5-9 June 1967
Budapest 1967

Radiation Sterilization of Biological Tissues for Transplantation [P] 16-20 June 1969
Budapest 1970

*Utilization of Large Radiation Sources and Accelerators in Industrial Processing [S] 18-22 August 1969
Munich 1969

[C] = Conference; [P] = Panel meeting; [S] = Symposium.
*Meetings partly related to radiation sterilization

Table 4b
Scientific meetings and publications on radiation sterilization of medical products organized by the
IAEA
Title of meeting Date and venue Date of

publication
Manual on Radiation Sterilization of Medical and Biological Materials [M] 1973
Revision of the IAEA Recommended Code of Practice for the Radiation Sterilization of Medical
Products [W]

5-9 June 1972
Riso, Denmark 1973Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



Radiation Sterilization of Medical Products, Pharmaceuticals and Biological Tissues [R]
22-23 November
1971
Riso, Denmark

Radiation Sterilization of Medical Products, Pharmaceuticals and Biological Tissues [R]
15-16 February
1973
Budapest, Hungary

Ionizing Radiation for Sterilization of Medical Products and Biological Tissues [S]
9-13 December
1974
Bombay, India

1975

Effects of Sterilizing Radiation Dose upon the Antigenic Properties of Proteins and Biological
Tissues [P]

27 Sept – 1 Oct
1976
Athens, Greece

High-Dose Measurements in Industrial Radiation Processing [A]
25-29 September
1978
Vienna, Austria

1981

[A] = Advisory group meeting; [M] = Manual; [P] = Panel meeting;
[R] = Research coordination meeting; [S] = Symposium; [W] = Working group meeting
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Conclusion
The diverse activities under the IAEA programme have attempted to help generate timely awareness
of the authorities in the developing member states of the availability of improved practices for
sterilization of medical supplies. Motivated by the need to help upgrade existing health-care services,
necessary steps have been taken in a number of countries to provide ready-to-use sterile medical
supplies. The example of these few countries and the preliminary encouraging results will
undoubtedly stimulate similar interests in other countries. The IAEA programme instrumentality will
continue to remain responsive and will continue to provide as far as practicable the necessary back-
up support in co-operation with WHO.

This Symposium has significantly helped to forward such aims to improve health-care services in
a global context. Through a review of the current status and state-of-the-art, and by exchange of
information on the future promotional steps, we are sure to proceed further. The opportunity afforded
me to participate in this Symposium, the benefit gained from the information disseminated, and the
development of contacts are gratefully acknowledged and very much appreciated.
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Disclaimer
The statements and opinions expressed in this paper are the sole responsibility of the author and do
not necessarily reflect the views of the International Atomic Energy Agency.
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Abstract
Radiation sterilization process development involves microbiological validation, dosimetry, and
assessment of product integrity. These are discussed, as well as relevant investigations carried out by
the Australian Atomic Energy Commission (AAEC), Australian industry, and research institutes in
South-East Asia and the Pacific region as part of an International Atomic Energy Agency (IAEA) co-
ordinated research programme.

Study of the radiation dose needed to sterilize cotton balls and other cellulose materials processed
in Australia, Bangladesh, Indonesia, the Philippines, and Thailand gave sterilization dose estimates
ranging from 11-40 kGy (1.1-4 Mrd). Differences in estimates were more attributable to differences
in method than in bioburden. The sterilizing dose for these ‘natural’ products depended more on the
frequency of radiation-resistant organisms per unit than on total presterilization bioburden levels or
the types of organism initially present.

The use of Bacillus pumilus spores as a biological dosimeter and ceric-cerous sulphate solution
as a chemical dosimeter for an international calibration of cobalt-60 sources was also investigated.
Dose rates in the various countries differed by up to 25% from the true value, causing variations in
dose estimates or decimal reduction dose values for B. pumilus spores of up to 35%.

Results of these studies suggest that some sections of the appendix on radiation sterilization
incorporated into the Australian Code of Good Manufacturing Practice for Therapeutic Goods or
the International Atomic Energy Agency’s Recommendations for the Radiation Sterilization of
Medical Products are neither relevant nor appropriate for regulating the use of this technology. With
increasing commercialization of radiation sterilization in Asia and a probable expansion of
international trade in medical products from these countries, revised recommendations would provide
valuable guidelines for regulatory authorities, manufacturers, and operators of contract or ‘in-house’
radiation facilities.
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Introduction
Radiation sterilization has been practised commercially in Australia since 1960. Three industrial
cobalt-60 radiation plants have been built, one of which was declared obsolete and dismantled
several years ago. Johnson & Johnson Australia Pty. Ltd. operates an ‘in-house’ plant in Sydney and
thus has facilities and technical and professional expertise to develop new radiation-processing
applications. Ansell International Pty. Ltd. now owns the second remaining industrial plant initially
constructed for Tasman Vaccine Laboratories (NZ) in Melbourne. Excess radiation sterilization
capacity is made available to other companies under contract. Process development is carried out in
conjunction with the customer or by subcontracting analytical work to National Association of Testing
Authorities (NATA) registered laboratories. At the AAEC’s Lucas Heights Research Laboratories,
limited 60Co facilities are available to undertake irradiations and process development under contract
or in consultation or collaboration with AAEC staff.

Development of a radiation process to sterilize a product involves the same steps as those
required for other terminal sterilization techniques such as heat and ethylene oxide. Three basic
questions need to be answered:

How much treatment is required?
What assurance is there that the product has received the required amount of treatment?
Is the product and its packaging adversely affected by the treatment? Radiation sterilization

process development therefore involves biological validation, dosimetry, and assessment of product
integrity. I shall emphasize the first two aspects. Relevant microbiological and dosimetric
investigations carried out by the AAEC, Australian industry, and at institutes in South-East Asia and
the Pacific region are described and discussed in the context of the Australian Code of Good
Manufacturing Practice for Therapeutic Goods (ACGMP) and regulatory practices in other
countries.
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Microbiological Validation of Gamma Sterilization
Medical products are routinely sterilized in some countries by radiation doses of 8 to 45 kGy (1, 2).
The rationale for the use of different doses is discussed by John Masefield in these proceedings. In
Australia, a minimum absorbed dose of 25 kGy has been used routinely for 22 years, its use having
been legitimized in the 1971 edition of the ACGMP (3). Although the ACGMP provides for the use of
higher or lower doses, 25 kGy has come to be accepted in Australia, as in many other countries, as
THE sterilizing dose.

It is pertinent to recall how 25 kGy came to be selected as the optimum sterilization dose. When,
in the 1950s, different species of microorganisms were tested by Ethicon, Inc., USA, for radiation
resistance, spores of a common non-pathogenic environmental contaminant Bacillus pumilus were
found to be the most resistant (4). This result was confirmed by Darmady et al. (5) in the UK, who
irradiated 100 discs, each loaded with 105-107 organisms from different species, at doses up to 25
kGy. Again, B. pumilus spores were the most resistant to radiation; a few survived 20 kGy, but all
were inactivated by 25 kGy. The sterilization dose was therefore set at 25 kGy on the assumption that
it would include a large safety factor because the radiation resistance of the natural bioburden should
be less than that of B. pumilus spores. Much relevant scientific information has been accumulated
since these investigations were carried out, and a reappraisal of the continued use of 25 kGy as the
optimum dose is now warranted.

The duration of the treatment, or the radiation dose, required to ensure that processed material
meets a predetermined level of sterility, depends on the number of organisms present and their
resistance to radiation. This is because the radiation inactivation of microorganisms occurs
exponentially, as does inactivation by heat and most other sterilizing agents. Thus all biological
validation programs, irrespective of the methodology, aim to relate microbial numbers and resistance
to dose.
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Biological Validation Programme in Australia
The biological validation programme for radiation sterilization set out in the ACGMP is similar to
recommendations made in 1974 by the IAEA (2). It has five main requirements, whether the dose to
be validated is 25 kGy or some other dose:

(a) To estimate the presterilization microbial contamination level and identify the types of
microorganism present.

(b) To estimate the radiation resistance of the contaminants to assess whether they will be sterilized
at the given dose.

(c) To ensure that the bioburden levels of subsequent production batches do not exceed the initial
estimate.

(d) To make sterility tests on irradiated items.
(e) To contaminate specific items deliberately with appropriate microorganisms and test for sterility

after irradiation.

If bioburden estimates of subsequent batches are substantially different, the whole procedure has to
be repeated.

Because of the microbiological effort required to meet the ACGMP guidelines, it is not surprising
that biological validation attempts on Australian manufactured goods have been quite limited, being
restricted to companies with access to radiation facilities.

The continued use of 25 kGy as a standard sterilizing dose in Australia is based on the assumption
that levels of radiation-resistant microorganisms in raw materials and manufacturing environments do
not exceed those reported in the Northern hemisphere (6-11). We have attempted to test this
assumption for one product prepared in three different manufacturing environments. The main result
of this investigation and the summarized results from similar investigations in neighbouring countries
are presented.

Validation of Radiation Sterilization Dose for Cotton Balls Processed in Australia

(i) Experimental
Cotton or cotton-rayon balls manufactured and/or packaged in Sydney or Melbourne between 1977
and 1979 were investigated. Samples from two to six batches processed in three locations were
examined for aerobic bioburden numbers and types of organism present. Anaerobic organisms were
not investigated because they were not present in at least one of the brands tested. From estimates of
the radiation resistance of the microbial contaminants, radiation sterilization doses for each brand of
cotton ball were calculated.

Membrane filtration was used to assess bioburden levels. Isolates were broadly classified by
their reaction to gram stain, morphology, colony appearance, and presence or absence of spores.
Substerilizing-dose (1 to 5 kGy) treatment (12) was used to isolate selectively the more prolific or
more radiation-resistant organisms. To distinguish between these categories, pure cultures of isolates
were prepared and frozen or dried aliquots irradiated at one or two screening doses (5 to 20 kGy);
the fraction of organisms surviving irradiation were then determined. Organisms requiring a dose of
more than 20 kGy to achieve an 8 log cycle reduction in numbers were considered resistant toSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



radiation. These resistant isolates were tested further to assess accurately the radiation parameters
D10 (decimal reduction dose) and Dq (quasi-threshold, or lag dose).

(ii) Results and Discussion
Bioburden – Mean bioburden levels on cotton or cotton-rayon balls processed in the three
environments varied from 23 to 1156 colony-forming units (CFU) per gram (Table 1). Within each
environment, bioburden ranged from 7 to 50 CFU/g over six production batches and from 60 to 2247
for two batches prepared by another manufacturer.

The percentage of occurrence of different types of organism differed between batches both before
and after low doses of radiation (Table 2), with no apparent correlation. For example, for one brand
the percentage of spore formers, which ranged from 15 to 61% before treatment, either increased or
decreased after doses of up to 3 kGy, forming 6 to 35% of the total survivors. For the other two
brands tested, spore formers made up either 41 to 82% or 56 to 75% of the isolates (Table 3).

Table 1
Bioburden levels of cotton balls processed in Australia

Batch Colony-forming units per gram Manufacturing environment
A B C

1 50 2247 15
2 34 60 39
3 19 158
4 7
5 11
6 17

Mean 23 1156 71

The three most radiation-resistant organisms isolated from Brand A cotton balls were a gram-
positive rod, a coccobacillus, and a spore former. They wer not identified further. In general, very
radiation-resistant isolates are difficult to classify and culture, sometimes taking a week to grow at
32°C. Because of this slow growth, their presence could easily be missed in validation methods
based on growth/no growth techniques.

Table 2
Distribution of main types of bacteria on four batches of Brand A cotton balls, before and after low
doses of radiation

Type Percentage of total bioburden
After manufacture After low-dose irradiation

Spore formers 15-61 6-35
Gram-positive rods 4-23 13-63
Gram-positive cocci 3-46 14-56
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Table 3
Range of distributions of organisms on different production batches of cotton balls treated with low
doses of radiation

Type Percentage
A B C

Spore formers 6-35 41-82 56-75
Gram-positive rods 13-63 0-6 0-22
Gram-positive cocci 14-56 0-53 15-40
Yeasts 0-20 0-18 0
Fungi 0-31 0 0-14
Unidentified 0-25 0 0

Radiation resistance of bioburden – Microbial contaminants from cotton balls were classified as
radiation resistant if a dose of 20 kGy was required to achieve 108 inactivation. B. pumilus spores
were inactivated by doses up to 25 kGy under the experimental conditions used in this investigation.
For the three brands tested, at least 0.5 to 2.6% of the bioburden organisms were resistant to
radiation, approximately half being more resistant than B. pumilus spores. Spore formers made up the
highest proportion of resistant organisms, the remainder being gram-positive rods, cocci,
coccobacilli, or yeasts (Table 4).

Table 4
Distribution of radiation-resistant bacteria on cotton balls

Type Percentage of resistant* bacteria Manufacturing environment
A B C

Spore formers 48 85 63
Gram-positive rods 46 5 16
Gram-positive cocci 4 5 21
Coccobacilli 2 0 0
Yeasts 0 5 0
Percentage of PSC 2.6 0.5 2.0
* Resistance to radiation equal to or greater than that of B. pumilus spores

The frequency of the resistant bacteria, grouped in classes according to the dose needed to
inactivate 108 organisms, is shown in Table 5. From samples of Brand A cotton balls with a total
bioburden level of 2186, three very resistant organisms were isolated that required doses of 35 to 40,
40 to 45, or 55 to 60 kGy to achieve 108 inactivation. Equally resistant organisms have been found at
comparable frequencies in Poland (1 in 2000) (7), Sweden (1 in 3000) (8), and Denmark (1 in 1400)
(11), but have not been detected in similar studies performed in the USSR (9) and Canada (10).

Although the bioburden on Brand B cotton balls was high, most of the additional presterilization
contaminants (PSC) were sensitive to radiation; only 0.5% were resistant to radiation compared withSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



2.6% of the PSC on Brand A cotton balls. None of the organisms isolated from Brand B cotton balls
had resistances as high as those found on the other two brands. However, high resistance organisms
would possibly have been detected if more samples had been tested to compensate for the very high
percentage of the bioburden that was sensitive to radiation.

Comparisons between batches, brands, and products of the extent of contamination with radiation-
resistant organisms can more readily be made if the number of resistant organisms present is
expressed as the number in a specified quantity or volume of production units, rather than as a
proportion of the total bioburden. For example, assuming a unit size of 100 × 1 g packets of cotton
balls, the number of organisms with a resistance to radiation similar to that of B. pumilus spores
would be 38 for Brand A or 372 for Brand B (Table 6), corresponding to the experimentally
determined frequencies of 0.016 or 0.003 respectively (Table 5). If Brand B organisms were
proportionately as resistant as Brand A organisms, we could expect 1900 organisms in this resistance
class, not 372. Total bioburden levels per se are therefore not necessarily useful nor appropriate for
predicting contamination levels of radiation-resistant organisms in materials.

Table 5
Minimum frequency of radiation-resistant organisms in presterilization bioburden of cotton balls
processed in Australia

Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



* Dose range for inactivation of 108 organisms

Inactivation dose for microbial contaminants isolated from cotton balls – From calculations
based on the frequency of occurrence of the most resistant isolates and their resistance to radiation as
determined under laboratory conditions, doses of 34.6, 20.8 and 28.6 kGy are required to ensure not
more than one survivor from 106 × 1 g packets of Brands A, B and C cotton balls respectively (Table
7). For Brands A and C, these doses, calculated from organisms forming only 0.05 to 0.1% of the
natural bioburden, were more than adequate to eliminate all other contaminants. Thus, the sterilization
dose for Brand A was set by one very resistant strain of bacteria with an average contamination level
of only 1 per 100 packets. However, the dose for Brand B, based on the most resistant isolate, was
insufficient to inactivate all bacteria in the adjoining resistance class, or all bacteria in the
predominant class of sensitive organisms. Under the experimental conditions used in thisSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



investigation, organisms in the second highest resistance class needed a dose of 22.9 kGy for their
inactivation. This dose ensured at least a 10-fold safety factor for organisms with other resistances.

Table 6
Estimate of number of resistant organisms in 100 (1-g) packets of cotton balls

Radiation Resistance Number per 100 packets Manufacturing environment
A B C

Less than B. pumilus 2 240 115 068 6 962
Equal to B. pumilus 38 372 73
More than B. pumilus    22      160      65   
Total 2 300 115 600 7 100

Estimation of sterilization dose for cotton balls – Inactivation doses reported in the previous
section were calculated from radation parameters obtained experimentally from isolates tested under
conditions known to protect bacteria from the lethal effects of irradiation. Organisms would be
expected to be more sensitive when irradiated in situ and correspondingly the sterilization dose
would be lower.

The D10 and Dq values for the most resistant isolate from Brand A cotton balls were lower when
determined from a suspension of the isolate dried onto cotton balls and irradiated in air (Table 8).
Using these values, the sterilization dose for Brand A cotton balls was reduced from 34.6 to 21.3
kGy. Other work in progress suggests that organisms are about 15% more sensitive when dried on
cotton balls and irradiated in air than when tested under the conditions used in this investigation. On
this basis, Brands B and C cotton balls would be sterilized by doses of 20 and 24 kGy respectively.

Table 7
Inactivation doses for bioburden on a million (1-g) packets of cotton balls
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a    Radiation resistance determined either experimentally on serum broth suspension of isolate dried
onto polyethylene strip; irradiation in vacuo or theoretically calculated as a maximum value from
upper value of class interval.

b    Inactivation dose: D10 (log No/106 packets) + Dq

c    Safety factor: 

The use of 25 kGy in Australia for sterilizing cotton balls manufactured or packaged in three
different environments has therefore been validated, assuming that industrial conditions remain
relatively stable.

(iii) Relevance of Results from Cotton Balls to Validation Programmes
The results reported here show that
–   there is little correlation between total presterilization microbial contamination levels and the

radiation dose estimated for sterilization;
–   there is no correlation between the types of microorganisms present and the estimated radiation

sterilization dose;
–   radiation sterilization dose depends solely on the extent of the bioburden contamination by

organisms in the highest class of radiation resistance or in the highest and second highest resistanceSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



class; and
–   radiation sterilization dose depends on the frequency of these resistant organisms in products

rather than on their frequency in total bioburden.

Table 8
Influence of irradiation conditions on resistance of most resistant isolate from Brand A cotton balls

Support Atmosphere
D10

(kGy)

Dq

(kGy)
Sterilization dose for 106 cotton balls

Polyethylene (P.E.) In vacuo 5.96 10.6 34.6
Cotton balls (C.B.) Air 4.44 0.74 3.4 21.3

Validation programmes should therefore be less concerned with total bioburden and identification
of contaminants and concentrate on detecting the frequency or increases in frequency of very
radiation-resistant organisms in product units, rather than in total bioburden.

Substerilizing dose treatments of the product for the quantitative determination of contaminant
survival, using membrane filtration or the AAMI incremental dose method (13, 14), can be valuable
techniques for this purpose. Once the sterilization dose is set, it must be monitored periodically to
check its continuing validity. For example, the results from the cotton balls suggest that for
sterilization at 25 kGy, a suitable quality control programme might involve subjecting 100 units to an
‘audit’ or ‘challenge’ dose of about 10 or 12 kGy (14, 15). The absence of survivors would indicate
that manufacturing conditions are under control and that the processing of 106 units at 25 kGy should
ensure not more than one survivor.

Validation of Radiation Sterilization Dose for Cellulose Materials Processed in Several Countries
in Asia and the Pacific Region

(i) Experimental
Between 1976 and 1982, participants in an IAEA co-ordinated research project examined radiation
sterilization practices related to local medical supplies and manufacturing conditions for countries in
Asia and the Pacific region. During this project, bioburden levels of several cellulose products were
assessed in the country of origin, and sterilization doses estimated from radiation parameters
acquired under different irradiation conditions (Fig. 1). These investigations were facilitated by
IAEA research contracts with the countries involved.
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Figure 1. Sterilization Dose Validation Methods.

(ii) Results and Discussions
The results presented in this section were extracted from reports given at IAEA research co-
ordination meetings by scientific investigators from Bangladesh (A.K. Siddiqui, Institute of Food and
Radiation Biology), India (N.G.S. Gopal, Isomed), Indonesia (N. Hilmy, Centre for the Application
of Isotopes and Radiation), the Philippines (C.C. Singson, Philippine Atomic Energy Commission),
and Thailand (U. Navanugraha-Yuthamanop, Office of Atomic Energy for Peace). In some instances,
basic data have been reinterpreted to obtain sterilization dose estimates.

Mean bioburden for cotton balls ranged from 120 (Thailand) to 460 000 (Bangladesh) CFU/g.
Sterilizing doses of 37.6 and 26.0 kGy, respectively, were calculated (Table 9). Incomplete data for
dressing gauze, surgical bandages, and swabs are shown in Table 10. Material processed in
Bangladesh had the highest bioburden of up to 106 CFU/g, giving sterilization dose estimates of 36
and 39 kGy for bandages and gauze, respectively.
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Table 9
Estimates of sterilising dose required for a million (1-g) packets of cotton balls processed in South-
East Asian and Pacific Region countries
Country Validation method (Fig. 1) Mean PSC/g Sterilising dose (kGy)
Australia 1A, 1B 23-1 200 2.1-2.4
Bangladesh 2,3 460 000 2.6
Indonesia 4 1 200 1.2
Philippines 2 350 2.1
Thailand 2 120 3.8

In general, sterilizing doses based on data obtained by direct irradiation of material were higher
than doses calculated from data obtained by irradiating bacteria isolated from the product. The
sterilizing-dose estimate of 37.6 kGy for cotton balls produced in Thailand (average PSC of 120
CFU/g) was obtained by this method following an extensive study of the quantitative determination of
survivors after irradiation at substerilizing doses of large samples collected during six months of
commercial production.

Levels of Sterility or Decontamination
Setting radiation sterilization or decontamination doses requires a judgment to be made by regulatory
authorities about the degree of assurance needed to show that an article is sterile or decontaminated.
In many countries, radiation doses are either based on a judgment that the dose should ensure that not
more than one organism will survive in a million treated units, or they are set at 25 kGy or some other
predetermined dose on the assumption that this level of sterility will be achieved or exceeded. Such
decisions can have the effect of ‘overkill’ with a consequent waste of radiation sources, increased
process time, excessive microbiological effort, and the possible degradation of the product. Two
examples of overkill are given below.

Table 10
Estimates of sterilizing dose required for one million (1-g) packets of cellulosic products, excluding
cotton balls, processed in South-East Asian and Pacific Region countries (data incomplete)
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The AAEC manufactures two types of lyophilized reagents for clinical use as injectables with the
radioisotope technetium-99m. These reagents are produced under very clean manufacturing
conditions in small batches of about 1000 × 1 mL units that are gamma sterilized at 25 kGy. Analysis
of bioburden data collected from all batches manufactured over the past five years shows that the
average pre-sterilization total microbial count per 1000 units is 4 organisms for one product and 50
organisms for the other. Assuming that the resistance of contaminants equals that of the most resistant
organism found on cotton balls, and that current production rates and conditions continue, sterilization
at 25 kGy guarantees that only one organism would be expected to survive in 400 years’ production of
one product, or 40 years’ of the other.

In recent years in North America, the concept of variable levels of sterility or decontamination
according to the end use of the product has been developed for medical products (16), and
sterilization at different doses is now widely practised in this region. Sterilization doses based on
annual production volumes may be more appropriate for low volume, low contamination materials
than doses designed to ensure sterility in a million items. It is pertinent to recall that the processing
conditions for canning foods, which are designed to ensure inactivation of Clostridium botulinum
spores, were initially based on one year’s production, that happened to be, at that time, a million
cans.
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Dosimetry for Gamma Sterilization
Chemical Dosimetry
In many countries, the absorbed dose achieved in material irradiated in commercial sterilization
facilities is routinely monitored using clear Perspex* or red acrylic dosimeters. For Australian
irradiators, the accuracy of the plastic dosimeters is checked by parallel irradiations made
periodically with dosimeters containing ceric-cerous sulphate solution. Absorbed dose is calculated
from the Potentiometric change induced in the ceric-cerous sulphate solution (17), measured under
contract at the Lucas Heights Research Laboratories. This dosimetry calibration service is also used
by a commercial radiation plant operating in Malaysia.

However, in an IAEA sponsored interlaboratory comparison of different dosimetric techniques
suitable for calibrating radiation sterilization facilities, which was carried out in several northern
hemisphere countries, ceric-cerous sulphate dosimetry did not perform as well as some other methods
(18). In contrast to this experience, ceric-cerous sulphate dosimetry was successfully used to
calibrate radiation research facilities in several Asian and Pacific countries. This work was carried
out by the AAEC under an IAEA Technical Contract as part of an Agency-co-ordinated research
project on radiation sterilization of medical products in the Indo-Pacific region.

Bulk ceric-cerous sulphate dosimeter solution was prepared and dispensed into 2-mL ampoules.
Dose rates determined for an AAEC 60Co facility, using this solution or primary standard Fricke
dosimetry, agreed within 2%. Five replicates, each containing six dosimeters, were forwarded to
participants in the Agency’s program. One replicate was intended as a spare, in case of breakages in
transit (a very rare occurrence). Three replicates were separately irradiated at a dose nominated by
the participant, usually 20 kGy. The irradiated dosimeters were returned to the AAEC for
measurement, together with an unirradiated replicate to be compared with an untravelled replicate,
should the measured dose of the other replicate deviate considerably from the nominated dose.

Five countries participated in this study: Bangladesh, India, Indonesia, the Philippines, and
Thailand. The measured doses for each country agreed well within and between replicates. However,
for two countries, the measured dose differed significantly from the nominated dose (Table 11). For
the same nominated dose, there was a 35% difference between the lowest and highest dose. This is
equivalent to setting a sterilization dose of either 20 to 27 kGy to achieve the same degree of sterility
for identical numbers and types of organism. The deviations between measured and nominated doses
were not attributable to changes in the dosimeters, induced by travelling or by exposure to higher
ambient temperatures, as untravelled and travelled dosimeters performed similarly when irradiated at
Lucas Heights at a dose rate comparable to that used by the participant.

Table 11
Calibration of radiation facilities in South-East Asia and Pacific Region countries by chemical
(Ce4+/Ce3+) or biological (B. pumilus) dosimetry

Country
AAEC estimate of dose rate
Country estimate of dose rate

Chemical Biological
A 0.925 0.982Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



B 1.023 Not available
C 1.030 0.976
D 1.060 1.120
E 1.250 1.231

All dosimeters for this calibration project were irradiated in facilities surrounded by air, as
occurs with most commercial facilities, except for those irradiated in under-water rigs located in the
fuel element storage pond at Lucas Heights. Because the radiolytic conversion of ceric to cerous ions
is known to be slightly temperature-dependent (19), the time – temperature relationships in one rig
were investigated over one year. Depending on the season and the dose rate, the temperatures during
irradiation varied by up to 30°C, with a consequent variation in G value for a 10mM/10mM
Ce4+/Ce3+ solution of up to 6%. These values show that the temperature during irradiation must be
known for the accurate calculation of absorbed dose in ceric-cerous sulphate solution, and suggest an
explanation for the discrepancies found for this dosimeter in the original IAEA intercomparison study.

Ceric-cerous sulphate dosimetry is not mentioned in the appendix on radiation sterilization in the
ACGMP. As the reliability and value of the Ce4+/Ce3+ system for measuring absorbed dose has been
demonstrated unequivocally over many years, it should be included among the other dosimetry
systems suggested in Section A.7.1 of the relevant appendix of the ACGMP.

Biological Dosimetry
Biological dosimeters can be used to estimate absorbed dose. The dosimeter is irradiated and the
fraction of organisms surviving irradiation determined. Dose can be assessed by reference to a
calibration curve constructed from a semi-logarithmic plot of survival ratio versus dose. Because of
the time, effort, and uncertainty involved in biological survival determinations, it is generally
considered that dose can be more accurately monitored by other parameters such as the speed of the
conveyor system or the use of chemical dosimeters. Nevertheless, because the lethal effect of
radiation on organisms is the raison d’être for radiation sterilization, there is some justification for
using biological dosimetry to calibrate new or modified radiation facilities.

Each participant in the IAEA’s S-E Asian and Pacific Region Radiation Sterilization Research
Project prepared a biological calibration curve for his or her radiation facility using B. pumilus
ATCC 27142 spores supplied by the AAEC. Serum bottles containing spores lyophilized from a stock
serum broth suspension were prepared by the AAEC and four replicates each of 36 samples were
distributed to all participants. For each replicate, six samples were irradiated at four doses, generally
3, 6, 9, and 12 kGy, and survival determined by the method normally used by each participant. The
fourth replicate was returned unirradiated to the Lucas Heights Research Laboratories for testing by
the same method. The ratio of the mean D10 value for B. pumilus spores estimated by the AAEC to
that determined by each participant was used as an index of the accuracy of the participant’s
assessment of dose rate in their radiation facility.

For three participants, D10 estimates agreed well with those determined by the AAEC (Table 11).
For the fourth participant, the high deviation from the AAEC Dl0 estimate corresponded with a similar
discrepancy in dose rate as determined by chemical dosimetry.

The use of different techniques and media by the participants did not influence postirradiationSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



survival determinations. However, survival increased when irradiated samples were stored at 32°C
before testing, increasing the D10 value by 20% (Table 12), which is equivalent to raising the 106

inactivation dose for B. pumilus spores from 20 to 24 kGy.

Table 12
Influence on postirradiation storage at 32°C on D10 of B. pumilus spores

Time at °C before testing
(days)

D10

(kGy)
0 3.36
1 3.61
3 3.82
7 4.02

10 3.96
14 3.91

If postirradiation recovery at 32°C is a general phenomenon applicable to other types of bacteria,
this has considerable practical significance for countries with high ambient temperatures. Sublethal
injury and the possibility of repair during storage should be taken into account when performing
validation studies.
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Summary and Conclusions
Gamma radiation is an effective sterilizing or decontamination treatment for many medical products
and raw materials. Process control involves calibration of dose rates in radiation facilities with a
reliable dosimeter such as the ceric-cerous sulphate solution and biological validation aimed at
estimating the frequency of radiation-resistant organisms on material before treatment. Various
techniques for process control are described.

Basic data obtained in Australia and from some Asian manufacturing environment are presented,
with particular emphasis on cellulose products. Up to 1% of bioburden organisms on cotton balls
processed in Australia were more resistant to radiation than B. pumilus spores. The frequency or
organisms with the highest, or next-to-highest, resistances determined the radiation sterilization dose,
even though the contamination level for these organisms may have been only 1 in 2300 organisms or 1
in 100 units.

Protocols for the microbiological validation of radiation sterilization of medical products as set
out in the IAEA Recommendations (2) and the ACGMP (3) are labour-intensive, time-consuming
exercises beyond the logistic, financial, and microbiological resources of most sectors of the industry.
In addition, much of the data required is irrelevant, as illustrated in the cotton ball study. The method
is also open to criticism because of its requirement for radiation resistance studies on pure cultures of
bioburden under laboratory conditions, rather than studies of resistance in situ. Alternative methods
involving product irradiation at low doses have been investigated in several laboratories, and a few
techniques developed to overcome this problem have been adopted.

Worldwide commercial and regulatory experience in the radiation sterilization of medical
products gained over the past twenty years means that the technological data base is considerably
broader now than when the IAEA Recommendations and the ACGMP were formulated. If we are to
take advantage of these accumulated experiences and new developments, and possibly increase the
flexibility of radiation sterilization technology and its control, it is time to review and revise, where
necessary, the relevant sections of the ACGMP and the IAEA Recommendations.

Although the use of 25 kGy as a routine sterilizing dose for medical products has served Australia
and many other countries well, this dose should not be regarded as sacrosanct and immutable.
Overkill is an inefficient use of limited resources. If acceptable levels of sterility or decontamination
can be achieved with doses less than 25 kGy, financial savings from treatment at lower doses could
partially offset the rising cost of medical products. On the other hand, manufacturers and regulatory
authorities should be aware that doses above 25 kGy may sometimes be necessary.
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Abstract
The first commercial application of cobalt-60 radiation sterilization took place in Australia in 1960.
By 1982, the process was being used worldwide, primarily for the sterilization of medical products.

Widescale adoption of the technique was stimulated in the 1970s by improved process economics,
by the development of new radiation-stable plastics, and by the use of new scientific dose setting
procedures leading, in many instances, to sterilizing doses that were lower than the traditional but
arbitrary 2.5 Mrd.

These methods, which do not require the laboratory determination of organism resistances (D10),
accurately account for the natural resistance of heterogenous microbial populations on medical
devices.

Efforts are now on the way to gain international acceptance of the dose setting procedures in order
to foster trade in products sterilized at these lower doses.

In order to deliver a variety of doses to a wide range of products efficiently and accurately, a new
type of computer controlled incremental-dose irradiator has been developed in North America.
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Current North American Practices in Gamma Sterilization
Following the demonstration by the United Kingdom Atomic Energy Authority in the late 1950s that
cobalt-60 irradiation sterilization was feasible and practical, Australia in 1960 established the
world’s first gamma irradiator in Dandenong for the destruction of anthrax bacillus in goat hair (1).
Shortly thereafter, Johnson & Johnson adopted cobalt-60 irradiation in the United Kingdom and the
United States for the sterilization of medical products.

Between 1962 and 1977, shipments of industrial cobalt-60 by Atomic Energy of Canada Limited
(AECL), mainly for medical product sterilization, rose from a few hundred thousand curies per year
to 5 million curies per year. Between 1977 and 1980, this doubled to 10 million curies per year and
is expected to double again to an amount in excess of 20 million curies by the end of 1982 (Figure 1)
(2).

Figure 1.

There are now 125 commercial irradiators in 36 countries on six continents, containing 66 million
curies of cobalt-60, out of a total design capacity in these units of 190 million curies (i.e. an average
of 35% utilization of design capacity).

Of these, North America has 34 irradiators with 30 million curies of cobalt-60 installed out of a
design capacity of 88 million curies (i.e. 38% utilization).

This means that North America currently has 45% of the world’s installed cobalt-60 processing
capacity, sterilizing between 20 and 30 million cubic feet of medical products per year. When fully
charged with cobalt-60, these units will be capable of processing between 90 and 100 million cubic
feet per year.
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The rapid growth of cobalt-60 sterilization in recent years can be attributed to the following
factors:

1. Growing recognition of the inherent reliability of the process.
2. The increasing availability of inexpensive radiation-stable plastics commonly used in the

manufacture of medical devices.
3. The economics of the process became competitive with those of alternative sterilization

processes (3) as a result of:
Relatively stable cobalt-60 prices.
Economics of scale resulting from the establishment of high capacity, high throughput

sterilizers.
The elimination of poststerilization product testing and associated product quarantine.
The wide use in North America of sterilizing doses lower than 2.5 Mrd.
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Availability of Radiation-stable Plastics
The effects of ionizing radiation on a wide range of organic materials have been extensively
investigated and documented, and include changes in physical and chemical properties that result in
strength loss, colour change, and odour generation (Table 1) (4, 5).

Table 1
Radiation effects on materials at 2.5 Mrd
Material Colour Physical properties Odour
Cellulosics * * *
Polyvinyls * *
Polyethylene *
Fluoroplastics *
Polypropylene * *
Acrylics *
Polycarbonate *
Nylon *
Glass *

 
* Denotes adverse effect

Levels of colour change and odour generation that were generally considered as an acceptable
part of the sterilization process in Europe were rejected in North America, a problem which
seriously hampered the growth of the process during the 1960s and early 1970s.

Of particular importance were the discoloration of polyvinyl chloride, cellulose and cotton, and
the odour generated in the cellulose – polyethylene laminates used in high-volume production hospital
procedure packs.

These problems have been alleviated by:

1. The growing commercial availability of radiation-stable grades of polypropylene and
polyvinyl chloride.

2. A general lowering of sterilizing dose in North America below 2.5 Mrd.
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Guidelines for Determining Sterilizing Dose
The shift in North America away from using the fixed but arbitrary sterilizing dose of 2.5 Mrd, first
recommended by Artandi and Van Winkle (6), resulted in large measure from work conducted by the
Radiation Sterilization Subcommittee of the Association for the Advancement of Medical
Instrumentation (AAMI).

This committee, formed in 1976, was charged with the task of formulating industry guidelines for
control of the radiation sterilization process, including recommendations for the establishment of
sterilizing dose (7).

The results of the committee’s work are described in detail in Sterilization of Medical Products,
Vol. II (8) and are presented as practical guidelines in the AAMI document entitled: Process Control
Guidelines for Radiation Sterilization of Medical Devices (Proposed – RS-P 10/82). Following is a
brief review of the four dose setting methods (B1 to B4), plus an audit procedure (B5), contained in
this document.

Before describing these methods, I want to stress that though the authors of this paper are
responsible for the words, our colleagues on the committee, with particular reference to the very
talented statistician Ken Davis of Ethicon, Inc., are responsible for most of the work.

Hypotheses: All four recommended dose setting methods are based upon internationally accepted
hypotheses, namely that:

1. Product bioburden comprises a mixture of homogenous populations, each of which behaves in
a D10 fashion (9).

2. ‘The choice of dose should depend upon the microbial contamination to be found on the item
and the margin of safety required when considering the end use of the item’. (IAEA
Recommended Code of Practice 1967)

3. Conventional sterility tests on small numbers of finished sterilized product are totally
inadequate as a means of verifying the attainment of a preselected Sterility Assurance Level
below 10−2 (Table 2) (10).

Table 2
Probability of acceptance of nonsterile product
Sample size Fraction nonsterile Probability of acceptance

20
0.001 6 0.999
0.060 0.50
0.168 0.05

1000
0.000 03 0.999
0.001 2 0.50
0.003 7 0.05

3 685 000 0.000 001 0.05

The committee was further influenced in its approach to dose setting by work reported in 1972 by
Tallentire on the use of substerilizing doses on product samples as a means towards developing newSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



approaches to microbial control. Tallentire stated that ‘the best evidence of the effectiveness of a
process must arise from experiments with naturally contaminated production items themselves, rather
than with contrived situations produced in the laboratory.’ (11).

This is confirmed by the fact that the D10 values of microbes determined after separation from
product followed by culturing and exposure to substerilizing doses vary widely with changes in
laboratory technique (Table 3).

As such, the relationship between the laboratory determined resistance and that of the microbe as
it naturally occurs on the product is not always known.

Tallentire also wisely observed that ‘we envisage that sterility testing of items given sub-
sterilization doses could reveal the frequency of radiation resistance organisms and, if desired, the
types of these organisms.’ (11).

Since this approach to dose setting offered the potential of eliminating the need for manipulating
organisms in the laboratory, it was selected as the most promising. What was subsequently achieved
was the development of acceptable formulae for extrapolating from observed sterility-test results on
substerilization-dosed product samples to the dose required to achieve any selected sterility
assurance level between 10−2 and 10−6.

Table 3
Difference in D10 value when organisms were dried on Kaycel* material or on glass

D10 value Mrd
Dried on Kaycel* Dried on glass

0.04 0.11
0.05 0.09
0.09 0.18
0.21 0.30
0.10 0.26
0.09 0.22
0.17 0.33
0.13 0.43
0.05 0.14
0.17 0.28
0.17 0.45
0.31 0.35
0.27 0.32

* Trade Mark

Computer simulations were used to analyze the behaviour of microbial populations of varying
numbers and radiation resistances at defined increments of dose.

More than 30 000 experimental design simulations, using 90 different populations of microbial
contamination, were used to create the substerilization test data and to verify the formulae.Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



Summary of Methods
Method B1. Dose Setting Using Bioburden Enumeration
The sterilizing dose in this method is determined by reference to a derived microbial population
(Table 4) that represents a more stringent challenge to the sterilizing process than that likely to be
provided by natural product bioburden or by conventional biological indicators (such as B. pumilus).

Method B1 requires four stages of activity:

Stage 1. Determine the average bioburden per entire device, using samples from at least three
different production lots.

Table 4
A standard table of microbial D10 resistance
Resistance
D10 Mrd 0.10 0.15 0.20 0.25 0.28

Frequency 0.654 87 0.224 93 0.063 02 0.031 79 0.012 13
Resistance
D10 Mrd 0.31 0.34 0.37 0.40 0.42

Frequency 0.007 86 0.003 50 0.001 11 0.000 72 0.000 07

The population in Table 4 (8) was selected after studying microbial-resistance frequency
distributions reported in the literature, including that shown in Table 5 plus those obtained from a
number of North American companies (Table 6).

Table 5
Microbial distribution resistances
(Population reported by Czerniawski and Stolarczyk (12) that was derived from the environment
rather than from medical devices)
Resistance
D10 Mrd 0.10 0.15 0.20 0.22

Frequency 0.603 7 0.207 4 0.058 1 0.052 7
Resistance
D10 Mrd 0.28 0.33 0.39 0.46 0.52

Frequency 0.045 0 0.019 5 0.009 4 0.003 7 0.000 5

Table 6
Microbial distribution resistances
(Population representing microbial resistances likely to be found on medical devices of a cellulosic
nature, derived from Whitby and Gelda (13))
ResistanceSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



D10 Mrd 0.08 0.10 0.15 0.20

Frequency 0.550 9 0.262 6 0.131 6 0.035 1
Resistance
D10 Mrd 0.25 0.27 0.29 0.31 0.33

Frequency 0.011 0 0.003 9 0.002 5 0.001 6 0.000 8

Stage 2. Select a convenient sample item proportion (SIP) for sterility testing purposes and
determine the dose that will provide a Sterility Assurance Level (SAL) of 10−2 for the chosen SIP
from the bioburden versus SIP Table 7 (14).
Procedures for interpolation between both bioburden and SIP values as given in the following

table are provided in the AAMI Guidelines.

Table 7
Gamma sterilization verification dose setting table given average bioburden per device and sample
item proportion (Verification dose given in Mrd)

** Verification doses for these SIPs are not recommended. An alternative dose setting strategy (B2,
B3, or B4) should be used.

Stage 3. Irradiate 100 product samples of the chosen SIP at the SAL 10−2 dose selected in Stage 2.
The delivered dose must not exceed the target dose by more than 0.05 Mrd, or 5%.

Perform sterility tests on the 100 irradiated samples. If no more than two positive results are
obtained from the tests, the SAL 10−2 dose may be considered verified.

Stage 4. Select the SAL appropriate to the end use of the product and use Table 8 to select the
sterilizing dose that provides the selected SAL.

Table 8
Gamma sterilization dose setting table given average bioburden per device and SAL (SAL dose given
in Mrd)
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If this table does not provide dose, then an alternative strategy (B2, B3, or B4) should be used.

For cases where the actual bioburden and/or the SIP fall outside certain bounds of those given in
Tables 7 and 8, interpolation is allowed. Interpolation in the tables is not required if the average
bioburden of the device and the SIP are within 20% of the tabled values.

Method B1 is the least difficult to perform, is the least expensive, and provides the most
conservative sterilizing dose estimate. As such, it is the most frequently used method.

Method B2. (DS
Method)

Dose Setting Using Fraction Positive Information From Substerilization Dosing
of Representative Product Samples

This method is based upon analysis of the measured response of natural bioburden on representative
product samples exposed to preselected incremental substerilizing doses of radiation.

Sterility testing of the irradiated product samples provides:

1. The lowest dose at which some sterile samples are obtained – First Fraction Positive dose
(FFP).

2. The first dose at which all samples become sterile (FNP). The difference between the FNP
dose and the FFP dose defines a standardized dose setting (DS) window in the experimental
sterility test data that is used to determine conservatively the more resistant components of the
natural microbial contamination (Figure 2).
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Figure 2.

Formulae are provided which use this information to determine the sterilizing dose that will
achieve any required SAL.

It should be emphasized that the method requires neither enumeration of bioburden nor the
resistance determination of microorganisms.

While the actual methodology in the AAMI Guideline provides for variability in the delivery of
the designed incremental doses, the following example in the interest of clarity assumes that the
delivered dose equals the target dose.

The method requires four stages of activity:

Stage 1: Sampling
Randomly select 280 samples of a convenient but representative sample size (SIP) from each of
three independent production lots.
Stage 2: (Experiment 1) First Substerilization Irradiation and Sterility Testing Equipment

(1) Perform a substerilization dose experiment in which 20 samples are irradiated at each of nine
incremental doses, from 0.2 to 1.8 Mrd as shown in Table 9 (100 items from each lot are saved
for Stage 3 – Experiment 2).

Table 9
Number of samples required for the experiments
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(2) Perform sterility tests on the irradiated samples and record the number of positives observed
at each dose as shown in Table 10.

(3) Determine the first fraction positive dose (ffp) for each of the three lots that, in this case, is Lot
1, 0.4 Mrd; Lot 2, 0.4 Mrd; Lot 3, 0.2 Mrd.

The primary First Fraction Positive (FFP) dose for the experiment is the median of the three
lot ffp doses adjusted downwards to the theoretical dose where 19 out of the 20 samples would be
positive (Table 11). In this example, the FFP dose is adjusted to 0.305 Mrd by deducting from it
the augmentor dose (A) obtained from Table 11.

Table 10
Positive sterility by incremental dose

(4) Determine the d* dose (the first incremental dose at which all samples are sterile) for each of
the three lots. In this case: Lot 1, 0.8 Mrd; Lot 2, 0.8 Mrd; Lot 3, 0.8 Mrd.

The primary D* dose for the experiment is the median of the three lot d* doses, provided no
individual lot d* dose exceeds the median d* by 0.5 Mrd or more, in which case D* is equal to the
maximum d* dose. In this case D* is equal to d* in Lot 1 or 2 which is 0.8 Mrd. Lot 1 is therefore
defined as the CD* lot.

Stage 3: (Experiment 2) Second Substerilization Dose and Sterility Testing Experiment

(1) Irradiate the 100 remaining samples from the CD* lot (Lot 1), determined in Stage 2
(Experiment 1), at the D* target dose of 0.8 Mrd. The actual dose delivered at this experimentSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



which may vary from the target dose is denoted as the DD* dose.
(2) Perform a sterility test on the 100 samples irradiated at DD*. The number of positives
resulting from this test is designated as CD*. In this example we will assume one positive.
(3)Establish the First No Positive (FNP) dose for the experiment:

(a) If CD* is zero, FNP is equal to DD*.
(b) If CD* is greater than zero and less than 10 positives, FNP is equal to DD* + 0.2 Mrd.
(c) If CD* is greater than 9 positives and less than 16 positives, FNP is equal to DD* + 0.4 Mrd.
(d) If CD* is greater than 15 positives, D* should be redetermined.

In this case, FNP = DD* + 0.2 Mrd = 1.0 Mrd.

Table 11
The dose setter augmentor (A)

Number of positive sterility tests at FFP A Mrd
19 0.000
18 0.013
17 0.022
16 0.031
15 0.038

14 0.045

13 0.052
12 0.058
11 0.065
10 0.072

9 0.079

8 0.087
7 0.095
6 0.105
5 0.115

4 0.128

3 0.143
2 0.165
1 0.200
0 0.200

Stage 4: Sterilizing Dose Calculation

(1) Calculate the resistance (DS) of the population surviving the DD* dose.
When FNP – FFP is less than 1 Mrd, DS = 0.2 Mrd + 0.2(FNP – FFP).
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When FNP – FFP is 1 Mrd or greater, DS = 0.4(FNP – FFP).
For the Example, FNP – FFP is 0.64 Mrd, hence
DS = 0.2 Mrd + 0.2(0.64 Mrd) = 0.328 Mrd.

In this case, FNP – FFP = 1.0 Mrd – 0.305 Mrd = 0.695 Mrd. Therefore, DS = 0.2 Mrd +
0.2(0.695 Mrd) = 0.339 Mrd.

(2) Calculate the dose (D**) that will provide a measurable SAL of 10−2.
D** = DD* + [log (CD*/100) + 2](DS)

   1.0 Mrd + [log (1/100) +2] 0.339 Mrd
= 1 Mrd + [−2 +2] 0.339 Mrd
= 1.0 Mrd

(3) Calculate the final sterilizing dose required to achieve the SAL appropriate to the end use of
the device.

Dose = D** + [− log (SAL) − log (SIP) − 2) (DS)]
= 1.0 Mrd + [− (−3) − 0 − 2] 0.339 Mrd
= 1.339 Mrd

In this instance, the dose required to obtain a SAL of 10−3 is 1.339 Mrd.
To provide an interface between the B1 and B2 dose setting methods and the more traditional

methods, and to permit the use of historically valid microbial resistance data, two additional methods
(B3 and B4) are included in the AAMI Guideline (12). These two methods require a high level of
microbiological expertise in that they necessitate a laboratory determination of microorganism
resistance. In practice these methods are seldom used.

Method B3. Dose Setting Using Method B2, Substituting Maximum Known Organism Resistances

This method follows exactly the protocol outlined in the first three stages of Method B2.
The final sterilizing dose determination (Stage 4) is modified to allow for the substitution of

known maximum bioburden resistance values for the DS value in Method B2:

Dose = D** + [− log (SAL) − log (SIP) − 2](Max D10)

The Maximum D10 values may be from historical bioburden data or may be derived from the
incremental dose experiments conducted in the first three stages of the method.

Method B4. Dose Setting Using Natural Product Bioburden Resistance

In this method a substerilization dose experiment is conducted to determine the dose at which not
more than 10 out of 20 samples tested will be positive in a sterility test. Sufficient samples are then
dosed at this level to obtain 200 microbial isolates and the radiation resistance D10 of each isolate is
determined.

The dose required to reduce a population of the observed distribution and resistance to the
required SAL is then calculated. This dose is then added to the initial 50%-sterility dose to give the

Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



sterilization process dose.
This method suffers from the disadvantages that it cannot be readily conducted by most companies

because of the extensive nature and high cost of the microbiological effort required. Also, the D10
values determined may not be representative of the actual resistance of the microbe as they occur on
the product.

Method B5. Sterility Dose Audit
Audit procedures have been developed that are applicable to all four dose setting methods. These

procedures are designed to detect changes in the product bioburden that would require an increase in
the previously established sterilization dose.

When adjustments are indicated, the audit procedure specifies the magnitude of such adjustments
to the dose.

In certain circumstances, the procedure recommends that the dose be re-established rather than
augmented.

The audit procedure is performed as follows:

(1) Select 100 representative product samples using the same SIP upon which the sterilizing dose
was determined.
(2) Irradiate the 100 samples at the D** dose determined in the original dose setting experiment.
(In the case of Method B1, D** is equal to the verification dose given in Table 7.) The delivered
dose must be less than D** + 0.05 Mrd or 1.10 D**, whichever is less. If the delivered dose is
less than 0.9 D**, the audit may be repeated.
(3) Test for sterility the 100 samples to determine the number of positive samples.
(4) The proper audit action is determined by consulting the Action Criteria versus Number of
Positives (Table 12). The proper action associated with the number of positives and the chosen
SAL and SIP is explained in the legend for this table.

Table 12
Action criteria for the established dose audit
(criteria based on 100 tests at D**)
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Legend
A = Accept original dose as valid.
C = Caution – original dose requirements may have increased. Check GMPs.

C+ = Caution – original dose requirements have changed; increase dose by the value given in
parentheses in Mrd. Check GMPs.

R+ = Re-establish dose – increase dose immediately by the value given in parentheses in Mrd
and then re-establish dose. Check GMPs.

Log
(SAL) = Log of the Sterility Assurance Level

SIP = Sample Item Proportion

D** =
The audit D** is the larger of D* + 0.2 Mrd or D* + [2 + log (CD*/100)](DS + A),
rounded up to the nearest 0.1 Mrd, or an audit-augmented D**. When sterilization dose is
augmented, augment D** by the same Mrd value.
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Impact on the Health Care Industry of Implementation of Scientific
Dose Setting Procedures
As a result of the utilization of these scientific dose setting procedures which accurately account for
heterogenous microbial populations and product end use, many products manufactured in North
America today are being safely sterilized at doses significantly lower than the arbitrary 2.5 Mrd
level. Some of these are included in Table 13.

Table 13
Typical dose ranges for gamma sterilized medical products
Product Dose Range (Mrd)
Diagnostic strips <0.8
Electrodes 0.8 – 1.5
Saline solution
Blood collection tubes
Cotton balls/swabs
Plastic laboratory ware
Surgeons’ gloves
Specimen containers
Disposable thermometers
Ophthalmic ointments
Grounding pads
Syringes 1.5 – 2.0
Infant wear
Hospital packs
Surgeons’ gowns
Surgeons’ gloves
Packaging materials
Catheters
Empty I.V. solution bags
Culture collection systems
Gauze sponges
Surgeons’ scrub brushes
Bovine serum
Bandages > 2.0
Orthopaedic prostheses
Glove powder
Stockinette
Orthopaedic mixing bowlsSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



Water-filled syringes
Hypodermic needles
Surgical blades
Surgical sutures
Vascular grafts
Surgical marking pens
Needle counting systems
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Incremental Dose Irradiator
Adoption of scientific dose setting methods in North America by industry with the endorsement of
government prompted the design of a commercial irradiator that could deliver a wide range of
sterilizing doses efficiently and economically.

The new type of irradiator described delivers an increment of the total dose during each cycle,
enabling various levels of sterilization to be achieved in the irradiator at the same time.

Product sterilized in the incremental dose irradiator receives a multiple of a preselected
incremental dose. For example, if one product carrier requires a 0.8 Mrd dose, and the second carrier
2.4 Mrd, each receives 0.8 Mrd during the first cycle. The first carrier exits after the first pass. The
second carrier passes through the chamber two additional times to receive another 1.6 Mrd dose.

A computerized control system for the incremental dose irradiator has been designed by Isomedix,
Inc. This control system ensures that each carrier receives the required number of increments to
achieve a preprogrammed dose. Furthermore, the system monitors all stages of the irradiation process
and provides documentation.

The progress of each carrier is traced through the irradiator until it arrives at the unloading
station. To accomplish this, each carrier is assigned a permanent binary identification number which
is read by light sensors strategically located at the product loading station, the irradiator entrance and
exit, and the product unloading station (Figure 3).

Figure 3.

As the first carrier in a production lot moves into the loading station, Sensor No. 1 places its
binary identification number into the computer memory. A video monitor displays the customer name,
product lot number, number of cartons to load into the carrier, number of cartons comprising the lot,
number of cartons remaining, and placement of dosimeters, if required (Figure 4).
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Figure 4.

As the carrier proceeds into the irradiator, Sensor No. 2 reads the assignment number and displays
the carrier position, number, programmed number of passes and number of pass currently running on
the video monitor located at the control console (Figure 5).

At the exit to the irradiation chamber, Sensors No. 3 and No. 4 read the carrier number. The
computer compares the number of cycles completed with the number of cycles required for the total
process. If the number of cycles required and the number of cycles completed agree, the Carrier
Return Control discharges the carrier into the unloading station on the sterile side of the warehouse. If
the comparison does not agree, the control returns the carrier to the chamber for another incremental
dose.

At the unloading station, a video monitor displays the same information as was displayed at the
loading station for that carrier (Figure 4). This display informs unloading personnel what product is
in the carrier and the location of dosimeters in the carrier, greatly speeding up the handling process.
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Figure 5.

As a final measure, the computer prints out hard copy documentation of all the information relating
to the product.
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Conclusion
I would like to leave you with a thought expressed by Dr Van Winkle of Ethicon, Inc. at a meeting of
experts on radiation sterilization held in Vienna in 1966. ‘Legislation which sets arbitrary figures for
irradiation dosage, source design or other manufacturing parameters can never assure safe or
efficacious products, and needlessly hampers future research and development.’ (15).

The health-care industry and the governments of North America agree and, accordingly, no longer
require the delivery of arbitrary, fixed sterilizing doses. The dose setting methodologies described
herein have played an important role in making this possible. We hope that you will give them your
earnest consideration.
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Glossary of Terms for Gamma Radiation Dose Setting and
Auditing

NOTE: Notation is in lower case when it refers to results for samples from single lots, and upper
case when it refers to a summary for all three lots.

Bioburden. The total of all viable microbes on a packaged item or unit immediately prior to radiation
sterilization processing.
CD*. The number of positive sterility tests from 100 samples irradiated at D*.
D10. The radiation dose required to kill 90 per cent of the organisms of a homogenous microbial
population. It is defined on the basis that the death of microbes follows first order kinetics.
d*. For each lot of incrementally dosed samples, d* is equal to the minimum dose of (1) or (2) below:

(1) the first incremental dose at which 0/20 positives occur, immediately followed by 0/20
positives;

(2) the first incremental dose at which 1/20 positives occur, immediately preceded and followed
by 0/20 positives.

D*. An initial estimate of that dose of irradiation that will provide a SAL of 10−2 for a sample.
Subject to some exception, it is the median of the three d*s.
D**. The sterilization audit dose at which no more than 1 in 100 samples are expected to be
nonsterile.
DS + A. An effective D10 value assigned to the population of microorganisms surviving a dose of D*
Mrd. Both DS and A are obtained from tables on the basis of the sterility test results of incrementally
dosed samples.
Fraction Positive: A quotient with a number of positives in the numerator and the number of samples
in the denominator.
first fraction positive (ffp). The lowest incremental dose for a given lot at which at least one of
twenty samples is sterile.
First Fraction Positive (FFP). The median value of three lot ffps.
First No Positive (FNP). The lowest dose in an incremental sterilization dose series at which 100
samples of a lot are expected to be sterile.
Incremental Dose. Irradiation doses ranging from 0.2 Mrd to 1.8 Mrd, delivered in increments of 0.2
Mrd.
Sample. The experimental unit that is either the whole item or unit, or a proportional part as
determined by weight, volume, or surface area, chosen so as to represent validly the bioburden.
Sample Item Proportion (SIP). The proportion of the item that was sampled for dose setting
procedures. When small items such as sutures are sampled, an entire item (SIP = 1) should be taken
for testing; whereas when large items such as surgical gowns are sampled, it may be necessary to
select only a portion of the item, e.g. 1 per cent (SIP = 0.01).
Sterility Assurance Level (SAL). The expected maximum probability of an item or unit being
nonsterile after exposure to a valid sterilization process. SALs range from 10−3 to 10−6, depending on
product use.
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Q. by B. Graham – Australia
Mr Masefield, I have the impression that the method you cite may critically depend on the number

of organisms of high resistance at the upper end of the distribution and if so, do you regularly do any
work to verify that the distribution is reasonably constant or do you depend on audit procedure?
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A. by J. Masefield – USA
The audit procedure is the technique. Naturally, in the case of the B1 Method where a resistant

distribution has been selected, there is a consistent attempt to compile additional data in a general
way to make sure that the distribution is more stringent than what is found in practice.

_______________
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Q. by F.L. Hebbard – Australia
Mr Masefield, you have referred basically to commercially sterilized products and the basis of

bioburden to reduce dosage. Let us take an example. If I were an importer and I was receiving a large
shipment of densely packed items with gross soil and a heavily contaminated resistant spore-bearing
organism, how would the persons in the radiation field to whom these items may be sent assess what
dosage should be given, and is there a method to assess bioburden levels?
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A. by J. Masefield – USA
I would recommend that you carry out one of the dose-setting strategies on representative samples

of the lot of the product being imported. The beauty of these methods is, in my view, that they are not
complicated and not expensive. You need access to an irradiator where you can deliver incremental
doses but that is all, you require. The rest is a few sterility tests and a calculation. It is, therefore, a
very practical proposition to carry out a dose-setting experiment to know where you stand in any
situation with resistant organisms.

_______________
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Q. by A. Tallentire – UK
One cannot help but admire the enormous amount of work which this group has put in in order to

get to this level of sophistication. I think, we owe them a great debt of gratitude for pushing forward
the frontier of radiation sciences. You mentioned my name on several occasions, John, and I would
like to include Frank Lahey and John Dwyer, who were in on the early hypotheses that form a part of
the AAMI guidelines. I would now like to ask you a question. Both the B1 and B2 Methods require
the recovery of microorganisms. The B1 Method requires a bioburden determination on unirradiated
microorganisms. The B2 Method uses a sterility test technique to detect microorganisms that have
been irradiated and my question is: do the AAMI guidelines in any way give guidance regarding
optimization of recovery conditions and hence give a conservative estimate of the dose to be set?
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A. by J. Masefield – USA
No, AAMI have not optimized methods that should be adopted to test sterility. They do not make

recommendations on culture media and leave that to the judgment of the manufacturers. I should,
perhaps, explain one thing. Voluntary guidelines in North America are not intended as rigid
documents. The situation is dynamic, and the guidelines are being constantly upgraded. The most
recent issue enables some interpretation. For one thing, when it says to deliver, say, 0.8 Mrd, one
does not deliver 0.8 Mrd, as it usually comes out to be 0.76 or 0.84 Mrd. We have to do a great deal
of work to understand how to handle interpretation in the real world. This subject is covered in the
most recent edition. The first edition failed to do this.

_______________
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Q. by N. Hilmy – Indonesia
I would like to ask John Masefield to comment on how we see the AAMI guidelines in my country.

We have had difficulties in irradiating 100 samples together, especially if the density of the material
is high, such that we could not get a minimum dose homogeneity. If we irradiate at the minimum dose
for the verification experiment, it means that the maximum doses are higher than the dose stated in the
verification experiment; that is not fair for the initial contamination. Our source is not very large, so
dose rates are not very high, and it is a problem to get the dose homogeneity in 100 samples. I would
like also to ask if the aim of the AAMI guidelines is to get a more practical and, of course, an
acceptable method. I would also like to ask about Method 4. If you still use the D10 value of the most
resistant microbes, it means that the guideline is complicated. I am not an experienced microbiologist,
but to isolate and determine the D10 of the most resistant microbe is not easy, especially in our
laboratory.
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A. by J. Masefield – USA
I will answer your last question first. I do not mean to be facetious, but you will notice that on the

AAMI Committee we had microbiologists, statisticians, regulatory people, and experts in radiation.
The only time I have seen Method B4 used, it required the D10 determination of 200 isolates, and it
was considered by the company who did it that it was the first and last time that they would go
through with it. The method is extremely difficult and requires very sophisticated facilities to get a
representative answer.

Concerning your first point, it is very important that you divide your samples into packages where
the dose for the incremental dose experiment is uniform throughout. You can put them into one
thousand packages, provided you can calibrate. You mentioned that you have a small source;
therefore, you have a low dose-rate which means that you can deliver the dose very accurately, as you
have a long time exposure. Therefore, you do have the opportunity to do it accurately. It is worth
remembering that having set a dose, we are talking about a dose that will be delivered in the low
dose zone of the irradiator. This really means that there is a very substantial added safety factor that
in practice is being applied. It is only a small percentage of the volume of the irradiation container
that receives the low dose, everything else is receiving 20%-30% more. You know, dose uniformity
is typically 1.3 to 1. Really, you have a 20-odd per cent overdose every time you put something in the
irradiator.
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Ethylene oxide (EO) has gained wide acceptance in industry and hospitals throughout the world as a
sterilant for medical devices. It is the simplest epoxide, a cyclic ether, and a highly reactive
alkylating agent. At room temperature and atmospheric pressure, EO is a colourless gas with a
characteristic ether-like odour having a widely variable threshold in humans. The mean lowest
detectable concentration in air is approximately 700 ppm which is well above the maximum
permitted exposure level for workers.

Ethylene oxide has several advantages as a sterilant:

1. The levels of relative humidity and temperature ordinarily used cause little deterioration of
many component materials of medical products that would be destroyed at the high moisture
and temperature levels employed with steam sterilization.

2. Some materials that are irreversibly damaged by radiation through discoloration or
embrittlement can be sterilized by EO.

3. The equipment is not so expensive as to preclude performing sterilization in one’s own plant.
4. When properly used and validated, EO is a very effective sporicidal agent capable of

delivering a high degree of lethality to a product load in a reasonable time.
5. The high diffusivity of EO permits sterilization of products in their final primary and secondary

packages.

There are disadvantages to the use of EO, however.

1. Ethylene oxide sterilization involves several variables. Moreover, sophisticated process
instrumentation providing accurate measurement of chamber parameters such as temperature,
gas pressure (and/or concentration), and relative humidity may lull some users into a false
sense of security. We are in fact interested in the values of these parameters at the spore
contamination sites on the device rather than in the chamber space external to the load where
the measuring and control instruments are customarily located. Validation must provide a
measurable observed correlation between chamber variables and the actual lethality delivered
to the devices themselves.

2. Preconditioning for temperature and relative humidity may be required, depending upon the
packaging, storage history of the device, and perhaps climate. It is particularly desirable that
loads sterilized under contract be preconditioned so that in mixed loads there is no mass
transfer of water vapour from one portion of the load to another during the early stages of theSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



process cycle. Preconditioning products sterilized under contract can normalize loads that due
to an unknown history in shipping, storage, and handling may have variable relative humidity
levels.

3. Residues of EO and its reaction by-products, ethylene glycol and ethylene chlorohydrin, may be
objectionable for certain devices; thus there must be a means for aeration of the lot according to
a validated procedure that reliably effects the desired residue levels.

4. The hazards associated with exposure of workers to EO gas warrants controls on equipment
design, the manner in which the cycle and equipment are operated, and the conditions under
which the devices are aerated.

The properties of EO that render it such an effective sterilizing agent are also responsible for its
toxicity to humans. Accordingly, it is appropriate to include a session on the subject of EO in this
Symposium because of the continuing interest by regulators and the industry in its use in two major
areas: effective cycle development and validation, and the safety of workers exposed to EO. This
afternoon’s session will address specifically these two issues and it is fortuitous that our speakers are
internationally recognized as experts in their respective areas.

Regulatory authorities in the US and in other countries are concerned with two aspects of EO
toxicity in humans. One is patient exposure to residues of EO and its reaction products, ethylene
chlorohydrin and ethylene glycol, that may be present on the device after sterilization. The other is the
exposure of the hospital or plant employee to EO gas during sterilizer operation and related
activities. These are independent concerns and each must be addressed separately.

The control of EO residues is a matter subject to FDA jurisdiction. Under the device GMP
regulation, EO is considered a manufacturing material, that is, a substance used to facilitate the
manufacturing process but which is not intended to be included in the finished device. The US GMP
regulation requires, in section 820.60 (d), that such materials be removed from the device or reduced
to a level that does not adversely affect the device’s fitness for use. In addition, records must be kept
documenting the removal of manufacturing materials. FDA considers it acceptable for a firm to
perform a one-time study of device aeration (including reprocessed loads if applicable) with the
development of residue data in the form of dissipation curves, for example. Thereupon, a firm need
only demonstrate that devices from each sterilizer load were aerated under the same conditions as
those used in the study. Of course, one presumes that the sterilization cycle has not changed.

In 1978, FDA proposed a regulation entitled ‘Ethylene Oxide, Ethylene Chlorohydrin, and
Ethylene Glycol: Proposed Maximum Residue Limits and Maximum Levels of Exposure’. Although
this document has never been finalized, the residue levels proposed for several types of medical
devices have been used as guidelines by the industry and FDA. For example, in the review process
for a new medical device sterilized with EO, the FDA scientific reviewer will use the proposed
levels as a guideline in evaluating the firm’s residue levels. During FDA inspections, the proposal is
used by investigators when reviewing a manufacturer’s actual residue level data. However, the Office
of Medical Devices in the review process may require lower residue levels than those in the Federal
Register announcement. A subject of intense interest now is the development of standard methods for
residue determination, an issue currently being considered by a committee of the Association for the
Advancement of Medical Instrumentation (AAMI).

Perhaps one of the most effective means of reducing product residues (and unnecessary deviceSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



outgassing in the workspace) is through conscientious cycle development that provides adequate
process lethality without excessive overexposure to the degree that residues attain unreasonably, and
perhaps hazardously, high levels. Intelligent cycle development can help minimize product residues.

Users of ethylene oxide sterilization have traditionally employed overkill cycles that are
developed using challenges consisting of a large number of microorganisms that are highly resistant to
the sterilant. This approach permits accommodation of fairly large fluctuations in natural product
bioburden without jeopardizing product safety. Another aspect of the overkill cycle is that it provides
for a safe product even if there have been unpredicted and perhaps unnoticed fluctuations in
sterilization parameter values in the chamber or, more pertinently, at the contamination sites on the
device. A disadvantage with overkill cycles is that they may result in unnecessarily high residue
levels.

On the subject of the work environment, earlier this year, the US Occupational Safety and Health
Administration (OSHA) published an advance notice of proposed rulemaking. Based upon scientific
data summarized in its Current Intelligence Bulletin #35, the US National Insititute for Occupational
Safety and Health (NIOSH) recommended that ethylene oxide be regarded as a potential occupational
carcinogen and that OSHA’s present exposure limit of 50 ppm be re-examined. In fact, several
companies had already lowered their internal employee exposure limits to levels substantially lower
than 50 ppm. NIOSH estimates that approximately 75 000 health-care workers in sterilization areas in
the US are potentially exposed to EO and that 25 000 others are incidentally exposed.

The American Conference of Governmental and Industrial Hygienists (ACGIH) is an
internationally recognized organisation that sets workspace exposure levels for hazardous substances.
Earlier this year in their 1982 Guide, ACGIH proposed and published an EO level of 1 ppm,
measured as an eight-hour time-weighted average. Following the customary two-year comment period
for such proposals, that level will become an ACGIH standard.

In January 1982, OSHA published in the Federal Register a request for comments concerning its
intent to propose rulemaking. Citing the activities of organizations such as ACGIH, and summarizing
experimental findings concerning the effect of ethylene oxide on worker health, this notice requested
comments concerning the effect of lowering of worker exposure levels from the current 50 ppm eight-
hour time-weighted average to any of the several levels under consideration, namely 0.5, 1.0, 5.0, and
10.0 ppm. Comments on several very specific issues were requested. To generalize, these issues
related to actual human and animal data concerning exposure to EO, the adequacy of the present 50
ppm level, the risks associated with the lower levels subject to proposal, suitability of current
clinical methods used to assess the effects of EO exposure, the practicability of several engineering
alternatives for controlling worker exposure, and certain economic and environmental data related to
commercial use of EO.

It appears that significant improvements in the workspace environment could be made through an
educational programme directed toward health-care and industrial users of EO. Such training might
include, in part, a presentation of actual observed workspace hazards such as those reported in the
literature by Dr Glazer. The following situations were encountered in a limited field study:

–   a sterilizer exhaust vent passed through a window and ended within one foot of the intake for
an air-conditioning unit;

–   a floor level sterilizer drain discharged directly into the room where the sterilizer was located;Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



the local EO concentration measured one foot above the drain during a cycle was 8000 ppm;
–   immediately upon opening the sterilizer door, an EO concentration of 1200 ppm was observed

in that area;
–   EO concentrations above and behind aeration cabinets venting directly into the room in which

they were installed ranged from 300 to 500 ppm.

There are literature reports of the physiological effects of such worker exposure, and clearly
exposure levels can be reduced significantly by good design. I believe, we should understand its
importance and be made aware of the safety of workers exposed to ethylene oxide gas.

Single user license provided by AAMI. Further copying, networking, and distribution prohibited.
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Introduction
Of the approximately 7,000 million pounds of ethylene oxide (EO) produced annually in the United
States, less than 0.5% is used by the medical device and diagnostic product industry for the purpose
of delivering health-care products free from microorganisms. Although on a relative scale, the amount
of ethylene oxide used for sterilization purposes may seem trivial, it represents a quantity capable of
processing 10 to 12 thousand million items on an annual basis (10).

In many countries, ethylene oxide is under intense scrutiny by manufacturers, users, and regulatory
agencies due to its toxic properties. It is considered by the National Institute for Occupational Safety
and Health (NIOSH) as a mutagen and a potential human carcinogen in the workplace. Nonetheless,
this highly reactive alkylating agent is considered essential to the international health-care system.
Indeed, in the vast majority of cases, there are simply no practical alternative methods for the
sterilization of high-volume single-use medical products. It is for this reason that approximately 65%
of the US medical device firms recently inspected by the FDA use an ethylene oxide process (8).

In addition to considerations for safe handling and limiting worker and environmental exposure,
successful application of ethylene oxide as a gaseous sterilant in the health-care profession requires a
thorough understanding of concepts and procedures covering product and package compatibility,
equipment selection, cycle development, validation, certification, and routine operation.

Unlike steam and irradiation processes, EO sterilization requires accurate control of many critical
process variables (Figure 1). An understanding of the interrelationship of these variables and how
they impact on process reliability, product functionality, and product sterility assurance has been a
concern of the Association for the Advancement of Medical Instrumentation (AAMI). This
professional association recently published a document entitled Guideline for Industrial Ethylene
Oxide Sterilization of Medical Devices, the contents of which is the theme of this presentation (1).

Figure 1. Controls required for various sterilization processes (13)
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Historical
Unlike the more familiar thermal methods of sterilization, the use of ethylene oxide is a relatively
recent development. Initially its pesticidal properties were limited to the killing of insects (4). In
1933, Gross and Dixon (9) filed a patent describing a method of sterilization based on the
microbiocidal properties of ethylene oxide. Somewhat later, ethylene oxide was found to be an
excellent gaseous fumigant for treating pepper and other spices (3).

It has been almost 35 years since Phillips and Kaye (16) published a series of now classical
papers (11, 17) in which the parameters for inactivating bacterial spores using ethylene oxide were
described. As a result of these and subsequent reports, notably by Bruch (2), Ernst and Shull (5),
Ernst and Doyle (6), and Kereluk, Gammon, and Lloyd (12), the practical use and application of this
agent as a sterilant has been established in a wide variety of fields ranging from food processing to
interplanetary space vehicles and probes. Truly large scale industrial use for medical products has
occurred only in the last 20 years.
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Process Development
There are four broad phases that characterize process development using gaseous ethylene oxide:

Equipment Selection
Cycle Development
Product/Package Functionality
Aeration

By far the most demanding phase is that of cycle development.

Equipment Selection
The major equipment components of the sterilizing system include the preconditioning chamber
(where necessary), exposure vessel, ethylene oxide feed system, aeration facility, steam supply,
utilities, and process control and monitoring hardware. Equipment must be shown to function
reproducibly while maintaining calibration tolerances, and provide adequate documentation of
process parameters. Physical location of equipment within the manufacturing facility can also be
important. For example, the location of preconditioning should facilitate timely transfer of product
from the preconditioning chamber to the sterilization vessel.

Equipment should be selected to provide a chamber control temperature range during gas
exposure that is less than or equal to ±3°C about the nominal cycle temperature during gas exposure.
Heat transfer and temperature control equipment should be capable of limiting product temperature
variation. A temperature range across the product load of less than or equal to 10°C during gas
exposure is common.

Sterilizers now incorporate microprocessors and computers for process control. Such
computerized systems can provide more accurate process control over the electro-mechanical
controls found in most sterilizers currently in use (15).

Cycle Development
Cycle development studies should be carried out on a product in its final design and package
configuration whenever possible. The two phases of cycle development are: (a) physical process
parameter evaluations and (b) microbial challenge systems.

(a) Physical Process Parameters
The AAMI Guideline (1) recommends that several physical process parameters be investigated
during cycle development, including product load characteristics, chamber humidification, chamber
air content, and EO addition.

1. Product load density and geometry are important, since changes in product density, number
of cartons, or pallet configuration may significantly affect the ability of the sterilant to
penetrate the product and destroy viable microorganisms. Large, dense loads may hinder
penetration. For routine processing, a standard load configuration is extremely important.

2. Chamber humidification refers to humidification within the sterilization chamber, as opposed
to “preconditioning” in a separate, environmentally controlled facility before the product is
placed in the sterilizer. Humidification is accomplished by the addition of steam, which
simultaneously raises the temperature of the load and provides the moisture necessary for
effective kill. The relative humidity and dwell time must be sufficient to moisturize the driestSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



product that is anticipated during routine processing.
3. Chamber air content is an important parameter. Evacuation of the chamber removes the air

barrier, thus facilitating the penetration of gas and heat and allowing the injection of EO to
concentrations appropriate for sterilization without excessively high pressures. When
ethylene oxide 100% is used, air removal is important because of the explosive properties of
EO/air mixtures. Evacuation by means of vacuum pumps or steam ejectors is common
practice; air removal by displacement is less common. The so-called ‘air-displacement cycle’
requires specific purging conditions to ensure that the required ethylene oxide concentration
is reached. The rate of evacuation can also impact sterilization effectiveness, since slow
draw-downs may remove excessive amounts of moisture and dry out the product.

4. For the gas addition phase of the cycle, liquified EO taken from a storage cylinder must be
converted into a gas prior to injection into the vessel. This is accomplished by heating the
liquid in a volatilizer or heat exchanger. The temperature of the gas entering the vessel should
be at or above chamber temperature. However, high inject gas temperatures can result in
product damage and in drying of the load, which will adversely affect microbial inactivation.
Low inject tempteratures will cool down the load, causing the exposure temperature to drop
below the minimum needed, and will increase the risk of gas stratification.

–   Ethylene Oxide Exposure Cycle
The four critical parameters to be studied during cycle development are:

Ethylene oxide concentration
Relative humidity
Temperature
Exposure time

1. Ethylene Oxide Concentration
Ethylene oxide concentrations in excess of 400 mg/L are commonly used. As the concentration
of EO is increased, lethality also increases within certain limits. The use of very high EO
concentrations, to enable a corresponding reduction in exposure time, must take into account
the possible negative impact on EO residuals. From a practical standpoint, increased
concentration will also mean an increase in pressure, which can become especially
significant with EO/chlorofluorocarbon mixtures. As mentioned previously, inadequate
moisture can retard sterilization; however, excessive moisture can react with EO and thereby
reduce its effective concentration. Excessive moisture can also result in product damage. To
prevent stratification of EO mixtures within the chamber, circulation fans may be necessary.
As in any dynamic chemical system, the concentration of the reactants has a profound effect on
the outcome of the reaction.

2. Relative Humidity
The effect of moisture, in the form of water vapour, on EO sterilization has been the subject of
numerous reports in the literature (7, 11). There is no question that moisture is an important
factor in achieving sterility. Desiccated bacterial spores are extremely difficult to kill with
EO; however, when the spores are exposed to adequate relative humidity, this resistance can
be eliminated. The AAMI Guideline (1) notes that relative humidity in excess of 30% is
common practice. Moisture in the chamber is not enough – it must reach the site to be
sterilized.
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3. Temperature
Temperature affects the permeability of gaseous EO through packaging materials and through
microbial cell walls. The classic studies of Phillips and Kaye (16) showed that sporicidal
activity increased by approximately threefold for each 10°C rise in temperature. Within
limits, the cycle time can be reduced if the temperature is elevated. Product temperature
should be controlled by correlation with chamber temperature. When the product does not
contain thermocouples during routine processing, the specification of minimum/maximum
chamber temperature is necessary. When conditioning takes place within the chamber, heating
may be necessary to achieve minimum product temperature before exposure time is initiated;
again, relative humidity should be maintained at a level greater than 30%. Temperature also
influences pressure and, since gas concentration may be determined by pressure readings, the
temperature must be specified.

4. Exposure Time
Developmental studies must determine the minimum exposure time needed to achieve the
desired margin of safety. Exposure cannot be initiated until all minimum process
specifications are met. In practice, this means that all thermocouples must come up to
temperature. Significant factors affecting exposure time are the degree of humidification of
product and the nature of the packaging material used. Low EO concentration and/or low
temperature frequently result in longer exposure times to achieve sterility.

Postexposure Process Parameters
Upon completion of the exposure phase of the cycle, two processing steps remain: evacuation and
chamber ventilation.

1. Evacuation
After the exposure phase of the cycle, the chamber must be evacuated to remove the sterilizing
atmosphere. A sharp drop in pressure should be avoided, however, since product and/or
package damage may result. The most common example of this type of damage is the
‘ballooned package’, a result of the limited permeability of many packaging materials. To
prevent such damage, a maximum evacuation rate must be specified. This is the point in the
cycle when materials are most susceptible to damage, since the product and package have
been subjected to elevated temperatures for the longest period of time.

2. Chamber Ventilation
Safety procedures and precautions are necessary to ensure that the sterilizer operator is not
exposed to EO when opening the door and unloading product. For example, operators could
be instructed to open the sterilizer door slightly and wait for a specified period of time before
unloading the chamber, or to wear approved gas masks for protection. Ventilation systems
should be designed in such a way as to provide air-flow patterns and velocity sufficient to
protect manufacturing personnel in the vicinity of the sterilizers as well as sterilizer
operators.

Conditioning
The discussion at this point should perhaps return briefly to a consideration of product humidification
prior to EO exposure, since some consider this to be the most important parameter for achieving
success.
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There are two methods of conditioning in current use: external conditioning outside the chamber in
an environmentally controlled facility, and conditioning inside the chamber. Frequently, both are used.
The method of choice depends on the nature of the materials and the type of cycle. Hard surfaces such
as glass, metal, and plastic may require a relatively long period of time to absorb moisture, and
external conditioning for significant periods may be necessary. On the other hand, cellulosics, paper,
and cloth readily pick up moisture and generally do not require long humidification times;
conditioning inside the chamber is generally more than adequate. Some cycles make use of a
specialized conditioning step within the chamber prior to exposure, where steam is introduced and
vacuum simultaneously applied. Such a procedure forces moisture deep into product sites within a
relatively short period of time.

It is important to design a conditioning process that can handle even the driest product. Excessive
drying may occur, for example, when pallets are stacked high above the floor, near heating ducts.
Seasonal variations may also affect the ambient moisture of many raw materials.

The critical role that moisture plays in achieving satisfactory results with EO processing is best
exemplified by what can be called the EO-Carrier Effect (Figure 2). Ethylene oxide is able to carry
moisture with it through films that are normally impermeable to moisture, such as polyethylene. It is
this characteristic that enables EO to sterilize items that cannot be readily sterilized even with steam,
such as mating surfaces like plungers fitted into barrels of syringes, and where plastic tubing parts are
connected (7).

Figure 2. Ethylene oxide carrier effect. Transmission of moisture through a hydrophobic film (7)

Problem Areas
Among the practical problem areas that may be encountered when using EO are the following:

1. Load Geometry
The gas must be able to penetrate the load, yet excessive EO absorption must not take place.
Standardization of load geometry is important.

2. Vacuum Rates
A low vacuum rate frequently results in the removal of the water that was added by the
preconditioning step and must be avoided.
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3. Optimum Moisture
Whether moisture is controlled by humidity sensors or by the pressure differential from added
steam, the appropriate quantity for a given situation should be determined experimentally
rather than derived from values reported in the literature.

4. Ethylene Oxide Superheat
Inlet gas temperature should be controlled; this parameter has been frequently overlooked in
the past. An excessiely wide temperature range must be avoided to prevent superheating
within the vessel.

It must be remembered that physical parameters such as temperature, time, humidity, and gas
concentration cannot be considered to be independent – they are, in fact, interdependent. If one
parameter is arbitrarily changed, the others may no longer be valid.

(b) Microbial Challenge
There are two generally accepted microbiological approaches for challenging the effectiveness of the
physical parameters previously described: the ‘Overkill’ method and the ‘Bioburden’ method. In
using these two methods, four types of microbial challenge tests may be used.

1. Inoculated Product – Inoculation of actual product or product parts with a suspension of
spores resistant to EO.

2. Inoculated Simulated Product – Use of a specialized device that contains spores, either by
direct inoculation or by means of an adventitious carrier that is known to be equally as
difficult or more difficult to sterilize than the natural product.

3. Inoculated Carrier – Use of an adventitious carrier bearing EO-resistant spores (e.g. a paper
spore strip) with correlation to inoculated product or inoculated simulated product.

4. Natural Product – The product with its naturally occurring presterilization bioburden can
also be used to establish microbial death rates and sterilization cycles.

–   Overkill Method
Traditionally, overkill methods have been used to establish EO sterilization cycles. This approach is
based on the concept that the sterilization process will inactivate the microbial challenge, plus an
additional safety factor. The microbial challenge consists of selected numbers of EO-resistant spores,
typically Bacillus subtilis var. niger, without necessarily relating the challenge population to the
presterilization bioburden. This method provides an overkill because the cycle conditions established
to kill the microbial challenge, plus an additional safety factor, are more severe than those required to
kill the presterilization bioburden.
–   Bioburden Method
The bioburden method is employed when product or package functionality would be adversely
affected by the rigors of an overkill process. It is somewhat analogous to the F0 approach to calculate
cycle lethality for steam sterilized parenteral solutions. The method requires the collection of
presterilization microbiological data and the correlation of the numbers and/or resistance of
bioburden to the indicator microorganism. This permits cycle selection by establishing the challenge
microorganism population (indicator microorganism) with a safety factor added above the anticipated
bioburden. Bioburden resistance can be determined by exposure of actual product samples to
fractional exposure-time increments at proposed cycle conditions. The presterilization bioburden
load on medical products has been shown to span an extremely wide range (Figure 3).
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Figure 3. Presterilization bioburden load on a variety of medical devices. Vertical bar identified the
arithmetic mean (14)

Safety Factor – After the necessary data are generated via the overkill or bioburden methods, the
level of sterility assurance (safety factor) is set at either 10−3 or 10−6 depending upon the end use of
the product, e.g. a 6-logarithm microbial reduction for products intended to come into contact with
compromised tissue (i.e., tissue that has lost the integrity of the natural body barrier), or a 3-logarithm
microbial reduction for products not intended to come into contact with compromised tissues.

Product/Package Functionality
An integral part of process development is the determination of product and package functionality
after the items have been subjected to the selected sterilization conditions. Product performance and
sterile-barrier integrity must be acceptable after sterilization. Product/package functionality testing
should also be conducted after the maximum authorized number of sterilizations.

Aeration
Process development should also include a determination of EO residues. Studies must be conducted,
or prior information must be available, to establish a procedure to ensure removal of product
residues to specified limits. The primary conditions that affect aeration efficacy in reducing EO
residues are temperature, dwell time, air convection, and load configuration.

Validation
Validation is a term that describes the overall programme used to demonstrate that a particular
product can be reliably sterilized by the designed process under actual production conditions (Figure
4). The elements of validation are:
a. An installation qualification of equipment (empty);
b. A performance qualification of the process, using specified product in the qualified equipment;Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



c. An administrative certification procedure to review and approve documentation of (a) and (b).

Figure 4. The overall validation programme as presented by AAMI (1)

New products and new sterilization equipment or process conditions must be validated. Each
production chamber must be qualified. Where process uniformity between chambers can be shown,
however, new products may be qualified by one chamber in order to qualify all equivalent chambers.
If a new product can be sterilized using a previously qualified cycle for a similar product, the new
product may be qualified by equivalency.

A validation programme is not required for product release if process monitoring and microbial
challenges for each sterilization cycle are equivalent to a performance qualification run and if the
equipment used has undergone installation qualification. This approach may be used, for example, in
instances where production quantities of product, needed for validation runs, are not available. The
validation programme should be completed, however, when the necessary quantities of product are
routinely available.

During the installation qualification, the sterilization process equipment, including the sterilizer
chamber, preconditioning chamber, and ancillary systems, should be reviewed and tested to verify
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satisfactory operation within the specifications required by the sterilization process. This evaluation
should be documented. Also an empty vessel temperature distribution test should be completed using
a minimum of three temperature sensors for chambers less than 100 cubic feet and an additional
sensor for each 200 cubic feet. Examples of equipment which should be verified and documented to
ensure that they are compatible with process specifications include chamber and piping construction;
seals and connections to maintain pressure and vacuum; instrumentation with adequate accuracy,
precision, and range; air, steam and water supplies; gas circulation systems; and electrical power
supply. A formal maintenance programme must be developed and established for all applicable parts
of the installation. Also a documented metrology and calibration programme for instruments must be
established, consistent with Good Manufacturing Practices.

The performance qualification provides rigorous microbiological and physical testing, beyond
routine monitoring, to demonstrate the efficacy and reproducibility of the equipment and the lethality
of the sterilization process. Criteria for acceptance should include conformance with operating
specifications for sterilization process parameters, for microbiological challenge, and for product
functionality.

1. Number of Runs
The performance qualification should include a minimum of three successful, planned

qualification runs, in which all of the acceptance criteria are met. If any one of these runs shows that
sterility assurance and/or product functionality requirements cannot be met, or if process parameters
cannot be maintained within limits, additional qualification runs are required after appropriate
modifications are made. Qualification runs must be carried out at maximum intended chamber loading
or with the product mix and loading that are considered most difficult to sterilize.

2. Product Temperature Sensors
Product load temperatures should be monitored with a minimum of three temperature sensors, for

chambers of less than 100 cubic feet, and an additional sensor for each additional 100 cubic feet of
product, up to a maximum of 24 sensors. Temperature sensors are preferably located adjacent to
biological indicators at centre, top, and bottom positions distributed throughout the load.

3. Product Temperature Spread
A temperature range across the product load of less than or equal to ±3°C during gas exposure is

common.

4. Biological Indicators
Sufficient microbial challenge systems should be distributed throughout the load to provide at

least one per 100 cubic feet of sterilizer product load. No fewer than 10 locations per load should be
used; these locations should be documented.

5. Biological Indicator Location
The microbial challenge must be located in the most difficult-to-sterilize product sites intended to

be sterile, or at convenient product locations that have been correlated with these sites in
development studies. In performance qualification runs, the maximum sterilizer product loading to be
produced must be utilized. The microbial challenge systems should be placed at the most difficult-to-Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



sterilize locations in the chamber load, including top, centre and bottom.

6. Ethylene Oxide Concentration
Common practice is to have the concentration of EO in excess of 400 mg EO/L.

7. Relative Humidity
Relative humidity in excess of 30% is common practice to avoid load desiccation and facilitate

sterilization.

Certification
It is essential that a controlled file of validation programme documents be established and
maintained. This file should include initial documents, as well as updated documents, filed by system
and equipment. In addition, an approval system consisting of a certification for the initial validation
programme and subsequent requalificaitons must be established.

Production Sterilization
Having completed all of the prerequisites, we are now ready to move into routine manufacturing.
During routine sterilization, there are five areas that must be controlled:

1. Gas Certification
A certification of feed gas identification and analysis should be obtained from the gas supplier or

performed by the user; certification must be traceable to each delivered batch of EO feed gas.

2. Process Parameter Monitoring
Accuracy and repeatability of routine sterilization instrumentation must be sufficient to permit

reliable control of the process parameters that were developed and validated.

3. Microbiological Testing
This includes bioburden monitoring or the use of biological indicators. Normally, the number of

biological indicators needed for routine sterilization is smaller than that required for performance
qualification. When sterilization process development and validation have been accomplished,
terminally sterilized products may be released without sterility testing of finished products, following
satisfactory biological indicator testing.

4. Reprocessing
When a product fails to be processed within specifications or fails testing and release criteria,

written reprocessing procedures must be followed.

5. Requalification
Performance requalification is recommended, when changes are made in the equipment, process,

product, or packaging that could affect EO sterilization efficacy. Also in the absence of known
change, a requalification should take place once a year. The following are examples of those changes
that may necessitate performance requalification.:

a. Product Tolerances
A significant change in product design tolerances that may affect the ability of gas to penetrate the
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b. Product Venting
A significant change in sterile barrier venting, e.g. from a vented to a nonvented end, or form one

type of filter or filter porosity to another.
c. Product Design
A significant change in product design, including product materials composition or thickness

where gas penetration is required, may affect EO sterilization efficacy.
d. Packaging
Changes that could affect microbial barrier efficiency; substantial changes in package design, e.g.

from a blister package to a pouch; changes in corrugated case design that may create significantly
higher chamber loading density or heavier paper loading; changes in vendors that may have a
significant effect on materials properties.

e. Gas Specifications
Changes in diluent concentration or type.
f. Equipment
Changes that affect the ability to maintain specified operating parameters or that substantially

change the rate of heat transfer or gas penetration to the product.
g. Process
Alterations in the process that substantially change the manner in which process parameters are

achieved and controlled.
h. Product Loading or Density
Any significant change in loading configuration.
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Conclusions
Ethylene oxide sterilization is indeed complex, but when based upon sound engineering and
microbiological principles, cycle development and validation need not be complicated. The proof
lies in the fact that ethylene oxide is the major sterilant used in the international disposable medical
device industry.
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Introduction
For the past one and one-half years, Johnson & Johnson has been conducting a pilot research
chromosome study in workers potentially exposed to the widely used sterilant gas, ethylene oxide
(EO). EO is used extensively in hospitals and industry as a sterilant and it is a ‘starter’ chemical for a
number of chemical products. At this time, there is no satisfactory substitute for EO as a sterilizing
agent. EO is a known mutagen in microbial, plant and animal test systems and NIOSH recommends
that it be ‘regarded in the workplace as a potential occupational carcinogen’; it has been associated
with chromosome changes in several human studies. This research project was undertaken in the
spring of 1980, soon after information describing chromosome changes in EO-exposed workers was
disclosed by the American Hospital Supply Corporation. The present study was designed to
determine whether employees potentially exposed to EO showed more chromosome changes than
employees thought to be unexposed.

Study Design
A cross-sectional somatic-cell chromosome study on human lymphocytes using coded specimens was
performed in workers potentially exposed to EO, as compared with other workers thought to be
unexposed at three different facility locations. Facilities were chosen according to the relative degree
of potential exposure to EO at levels that were estimated to have existed prior to September 1980.
Estimates were based on environmental sampling and monitoring as follows:
Facility Relative exposure* Estimated range of 8h TWA** of sterilizer operators
Plant I Low (LRE) < 1 ppm
Plant II Moderate (MRE) 1-10 ppm
Plant III High (HRE) 5-200 ppm***

LRE = Low Relative Exposure; MRE = Moderate Relative Exposure; and HRE = High Relative
Exposure.

**TWA = Time Weighted Average in ppm (parts per million) of ethylene oxide.

*** An estimate of 50-200 ppm was made for samples collected on 10.3.80. Estimates for samples
collected before and after that date fell within the range of 5-20 ppm.

The potentially exposed subjects included in the study were employees at each plant, who were
working in the sterilizing areas and, therefore, were thought to be potentially exposed on a day-to-day
basis. Employees at each plant were further categorized as to high-potential and low-potential
exposure to EO, based on job descriptions, location near the sterilizer, amount of time thought to be
exposed to the gas and other factors. For each potentially exposed subject in each plant, a randomly
selected control, matched by age and sex, was identified in the plant and invited to participate in the
study. Confidentiality of data, informed consent, and other ethical considerations were carefully
observed.

After an employee agreed to participate, a work history and health questionnaire was completed
and blood samples were obtained for chromosome studies. These studies included observations of
the frequency of sister-chomatid exchange (SCE), and of the frequency and type of chromosomeSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



aberrations in lymphocytes. All blood samples were coded and sent to Litton Bionetics where
lymphocyte culturing and cell scoring were performed. Referee readers from New York University
Medical School and the Institute for Medical Research were appointed to monitor cell scoring
regularly. The Clinical Epidemiology Unit of the University of Pennsylvania Medical School was
engaged to advise on the design of the study and to uncode and analyse the data. A Scientific
Advisory Board of experts in the fields of cytogenetics, epidemiology, pathology, and statistics was
assembled from leading academic and research institutions to review and guide the study.

In each plant, the levels of SCE and chromosome aberrations in the potentially exposed employees
were compared with those of the control employees, and findings at the three plants were compared
with one another. During the course of this study, it became apparent that the SCE levels in the control
group of presumably unexposed employees at Plant III were higher than the results for the other
control groups available for comparison at the time. This led to a modification and expansion of the
study design in that an additional set of controls, consisting of nonemployees, was selected from the
community where Plant III is located. This outside control group was selected and matched by age
and sex to the potentially exposed Plant III employees. These community controls were nominated by
the potentially exposed employees. The outside controls employed at the time had never worked in
Plant III and had no known exposure to EO.

The appendices contain brief descriptions of 1) The criteria used to categorise employees by
exposure status (Appendix 1), 2) How the blood samples were managed, 3) How SCEs and
chromosome aberrations were determined (Appendix 2). Tables 1 and 2 summarize the study design
and the distribution and testing frequency of subjects at each plant site.

The cytogenic data described in this report are preliminary and are the subject of continuing
analysis, as recommended by the Scientific Advisory Board. The preliminary analysis reports on two
cell-scoring components: SCE and chromosomal aberrations of several different kinds. It is important
to note that the results discussed here have been observed in relatively small study populations and
must be confirmed by additional studies before any general conclusions can be reached.

Employees at Plant III (HRE) and Plant II (MRE) now have been tested three times, i.e. at the
beginning of the study and twice at 6-month intervals. Employees at Plant I (LRE) have been tested
only twice (baseline and 12 months later) because the results of the first test revealed no significant
difference between potentially exposed and control populations. Blood samples for the 12-month
follow-up at all locations were obtained during the fall of 1981. Only the baseline and 6-month
follow-up data are presented here.

Table 1
Classification of sites by groups studied and measures obtained

Site studied Groups studied Measures obtained
Exposed Controls

Plant I (LRE)

High potential In plant SCE
Low potential Aberrations

Medical examinations
Work history
Exposure measurement
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Plant II (MRE) same same same
Plant III (HRE) same In plant same

In outside
community

Table 2
Persons studied by worksite

Worksite exposure Number of persons
Baseline 6 month retest

Plant I (LRE)
Exposed High potential 8 0

Low potential 5 0
Controls None (plant) 11 0

Plant II (MRE)
Exposed High potential 4 4

Low potential 18 16
Controls None (plant) 19 18

Plant III (HRE)
Exposed High potential 2 2

Low potential 24 24
Controls None (plant) 21 20

None (outside) 0 24
Total 112 108

Results
The SCE data show a consistent dose-response trend at Plant III (HRE) for both the original test and
6-month follow-up (Figure 1). Both the potentially high- and low-exposed groups had statistically
significantly higher SCE scores than the control group at baseline. The SCE data for Plant I (LRE)
showed no significant difference between potentially exposed and control groups.
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Figure 1.
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Figure 2.

There was no significant average reduction in SCE between the original test and the 6-month
follow-up among all employee groups tested at Plant III. Moreover, the employee controls at this
location, who were believed not to have been exposed, had significantly higher SCE than the outside
controls not employed at the plant. All use of EO was discontinued at Plant III immediately after theSingle user license provided by AAMI. Further copying, networking, and distribution prohibited.



first survey and there has been no exposure to EO at that location for more than a year. Three
employees at Plant III, including the two sterilizer operators (who comprise the high potential
exposure group at that location) and one other employee, had SCE scores higher than any other person
in the study (ranging from 23 to 43 SCE/cell). Even with these persons excluded from the data, there
was a small but reasonably consistent dose-response trend at Plant III (HRE) for both the original test
and 6-month follow-up. The chromosome aberration data do not show results as consistent as the
SCE findings. Trends in complex chromosome aberrations are similar to the SCE results, but analyses
of these trends are limited because complex aberrations are relatively rare (Figure 2). The complex
aberration results suggest a dose-response relationship, but the magnitude of the differences between
groups is not great.
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Summary
This study suggests a dose-response association between exposure to ethylene oxide and SCE in
humans. It is not believed that a dose-response association between environmental chemical exposure
and human SCE levels has previously been described.

An unexpected finding is that employees at Plant III (HRE), not originally considered directly
exposed, may have incurred EO exposures, unknown to them as well as to the company. This is
suggested by the somewhat elevated group SCE levels in what originally was thought to be an
unexposed group. Transient exposure may have occurred during periods of use of certain centralized
facilities that were located in close proximity to the sterilizer. Another explanation may be low-level
exposure at regular work stations although this seems less likely. It is estimated that these exposures
would have been considerably less than 50 ppm 8 h time weighted average (TWA).

There does not appear to be a downward trend in group SCE levels for all employee groups
tested at Plant III (HRE) following six months without exposure. This stability of group SCE levels
was unexpected.

No statistically significant changes in SCE or chromosome aberrations were noted between the
potentially exposed and control groups at Plant I (LRE) where exposures to EO have been at levels
below 1 ppm (8 h TWA) for the last several years.
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Appendix I

Selection of Study Participants
Definitions of the two categories of participants are described below:

1) Potentially Exposed Employees
For each plant location, the potentially exposed employee category includes all those employees
who worked in the immediate sterilizer area for 30 minutes or more, daily, and those other
individuals who, by the nature of their job assignments, were likely to have been exposed to high
peak levels, but who do not meet the ‘daily 30 minutes or more’ definition.
a) High-Potential Exposed Employees

The sterilizer operators are called ‘high-potential exposed employees’. They are categorized as
a special subset of the exposed group because they are regularly assigned to the operation of the
sterilizer units. For this reason, they are subject to higher risk of exposure occurring in
conjunction with the operation of the sterilizer, as well as with the ambient levels in the
immediate sterilizer area.

b) Low-Potential Exposed Employees
This subcategory includes all other potentially exposed employees.

2) Unexposed Controls
For each plant location, an age and sex matched group of controls was selected from employees
thought to be unexposed to EO.
a) Inside Employee Controls

Inside employee controls were those employees thought to be unexposed and randomly selected
to match by age and sex each potentially exposed employee studied in that location.

b) Outside Community Controls
At Plant III an additional control group was chosen from nonemployees resident in the
community. Each potentially exposed individual ‘self selected’ his or her own community
control, matching in age and sex. The following restrictions were required: All outside
community controls had to be currently employed in a nonhospital environment and were to
have had no known exposure to EO.
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Appendix 2

Protocol for Human Chromosome Studies
An essential feature of the study is that samples are handled and scored ‘blind’, without knowledge of
the status (control vs. at risk) of the subjects.
  i. Blood is collected in sterile heparinized ‘Vacutainers’ and samples are coded. Samples from

groups of individuals thought to be at risk and from control individuals are handled concurrently to
ensure equivalent treatment.

 ii. Replicate 10-ml cultures are set up in RPMI 1640 medium supplemented with 15% foetal calf
serum, 1% phytohaemagglutinin M, L-glutamine, and antibiotics. Incubation is at 37°C in
humidified incubators in an atmosphere of 5% CO2 in air.

iii. Chromosome aberrations: Three cultures are fixed between 48 and 51 hours of incubation. One
hundred good quality metaphase cells are selected for each individual and analysed at the
microscope. Slide location co-ordinates are recorded for all abnormal cells and all aberrations are
verified by a second observer – the laboratory supervisor or the study director.

To detect unstable aberrations such as dicentrics and quadriradials, cells must be examined
when they enter mitosis for the first time, before they can be lost due to cell death during the
division process. To ensure that as many as possible of the cells scored are in their first mitosis
(M1 cells), fixation times were based on results of experiments on twelve individuals. The staining
pattern was used to distinguish cells that had cycled once, twice, or three times (M1, M2, and M3
cells) in cultures containing a low concentration (25μM) of 5’-bromodeoxyuridine (BrdUrd),
known not to inhibit the cell cycle and fixed at a series of times between 45 and 60 hours. The
fixation times were selected to give a good mitotic index, and the data from the test individuals give
an estimate of the small error introduced by scoring a low frequency of M2 cells. BrdUrd is not
used in cultures for aberration scoring.

iv. Sister Chromatid Exchange (SCE)
Three cultures per person are used, fixed between 68 and 72 hours of incubation to ensure a good
yield of M2 cells. Eighty cells are scored per person.

To detect SCE cells are treated with BrdUrd for two cell cycles. To minimize variability, we: a)
inoculate the same number of lymphocytes per culture for all individuals and b) use a concentration
of BrdUrd (100μM) thought to reduce the variation caused by individual difference in cell growth
(Carrano, et al, 1980) (1).

 v. Cell fixation and slide preparation
During the final two to two-and-half hours of incubation, cultures are treated with colcemid (0.1
μg/mL). Cells are collected, treated with hypotonic 75mM KCl solution at room temperature for 5-
10 minutes, fixed in methanol-glacial acetic acid, 3:1 v/v, washed twice in fresh fixative, and
dropped onto glass slides to air dry. For aberration studies, slides are stained with Giemsa’s stain.
For SCE analysis, we use a modification of the FPG technique (Perry and Wolff, 1974, as modified
by Goto, et al, 1978) (2, 3).
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DISCUSSION
SESSION V

– Part 3
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Q. by J. Nisbet – Australia
A question to Dr Morrissey. In a system that is at all times under vacuum, what is your view on the

practice of topping up with gas to maintain a steady vacuum?
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A. by R.F. Morrissey – USA
This is a good question and it comes up frequently. There are differences of opinion on how to

approach the subject. It gets back to validation. If you validate a process and you know what the
biological kill is at a particular gas concentration and particular conditions, you probably do not have
to add gas. I think, an additional question is why has there been a drop in chamber pressure or why
was it necessary to add extra gas during the exposure phase. Quite often it is caused by packaging
materials; in many cases they are corrugated cellulocics which absorb ethylene oxide (EO). You
might say that if those materials are absorbing EO and the microorganisms are contained on the
materials that the microorganisms also would be absorbing EO and be effectively killed. Therefore,
why add additional gas? I think, it really goes back to validation. If you have shown that you can have
an effective process without gas addition, fine. If one firm, for instance, does one thing in a particular
situation and another firm does something that appears to be radically different and works, validation
is required. I do not believe that you have to make up gas, but may be there are cases where you may
have to.
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Comment by R.J. DeRisio – USA
For those persons who are not familiar with the EO process, I think what is really different with

the question is that it relates to subatmospheric processing, whereas for the types of processes
operated under pressure the thought of adding make-up gas immediately brings to mind the possibility
of a leak in the sterilizer in contrast to absorption within the load.

_______________
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Q. from the floor
Dr Herrmann, in the evacuation cycle, the EO is discharged into an open vent and then goes into

drainage. We installed a system based on the solubility of EO in water. The question is, is it soluble
and is there a reliable type of humidity sensor on the market today for EO sterilization?
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A. by A.A. Herrmann – USA
I will refer the questions to Dr Morrissey. On the question of sensors, I am not familiar with that

type of technology. However, we are very careful how we manage all EO exhaust, as well as liquid
material, so as not to put it in community air and community water.
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A. by R.F. Morrissey – USA
The whole subject of sensors for relative humidity for EO sterilization came up quite often during

the development of the AAMI document. Let me just give you a minor commercial. There are two
documents: one is an actual formal recommended practice guideline, the other is the proceedings of a
meeting that Dick DeRisio mentioned. This was a joint meeting of the FDA, industry, and academic
people who put together the guidelines. Humidity sensors, historically, are very inaccurate. In the
AAMI document, there are a number of cases of caution. There are cases where it is shown that
alternative procedures are quite effective and that one does not have to employ a humidity sensor.
There are, for instance, pressure and temperature differentials. In many cases, sterilization cycles
start off by pulling a very deep vacuum, and when one pulls a deep vacuum, one adds a quantity of
steam from which the relative humidity can be determined by pressure differential. Humidity is
important, but the use of a relative humidity sensor may not be critical, as there are alternative ways.
If you take a look at the AAMI document, I think it might expound the subject.
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Comment by R.J. DeRisio – USA
Our experiences at the regulatory Agency in coming to grips with this subject have provided that

firms measure relative humidity at the beginning of the exposure, before the gas is added, and reliably
record the information. There are some firms that are using DuPont monitors. Some of these monitors
tend to be very expensive, but also very accurate, and there can be conversion to relative humidity
data, knowing the temperature of the chamber. We have seen firms that have to wash and clean and
then dry sensors almost after every load and even then some of these sensors do not have too long a
life with recurring exposure to EO.
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Comment by R.F. Morrissey – USA
Let me add to the last point. Some manufacturers have found a way to increase the life of a sensor.

Those that are using sensors have derived mechanisms of removing the sensor immediately from the
environment prior to EO gas addition, flushing the sensor with dry nitrogen and holding it in an
antechamber configuration, so that the quality and the life of the sensor is extended.

_______________
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Q. by J. Perry – Australia
I have two questions. What does Dr Morrissey consider to be the optimal time for chamber

evacuation and does he have any knowledge of a product that has been preconditioned or
prehumidified for, say, 24 hours which would then still require chamber humidification?
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A. by R.F. Morrissey – USA
The simple answer is to validate it. With a particular product and a particular type of sterilizer,

preconditioning may or may not be necessary. I do not think, there are any magic numbers. When you
go through the AAMI document, you will find that there are not that many numbers. The EO process is
so variable that if it can work in particular circumstances with a particular product in your sterilizer
and you can prove it with sound scientific data, then it should be acceptable.

_______________
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Q. by R. Clemens – Australia
Dr Morrissey, with regard to the transmission of EO and water vapour through polyethylene, is

there any variation rate of diffusion because of the polyethylene formulation, or doesn’t it enter into
it?
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A. by R.F. Morrissey – USA
I would assume so. I really cannot answer your question specifically. The reference is taken from

some of the classical work of the late Bob Ernst, who, many of you may know, was a pioneer in EO
sterilization and demonstrated an interaction, an interplay between moisture and EO. Understanding
this relationship is really the key to success with EO. I am sure that a variety of films and
compositions may affect the diffusion rate, but I do not have that answer.

_______________
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Q. by J. Perry – Australia
I have a question for Dr Herrmann. At what physical site, or where do you physically measure

your ppm in the atmosphere, and could you give me an indication of the instrumentation that you use?
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A. by A.A. Herrmann – USA
The type of instrumentation has been caught up somewhat in the state of the art. It was a very

difficult thing prior to 1976 to measure accurately environmental workplace EO because of lack of
technique. About that time the charcoal tube surfaced. We have used a variety of techniques for
personal monitoring, which is breathing zone monitoring. The charcoal tube is a unit that is attached
to a pump that draws an air sample in reasonably close proximity to the breathing zone that essentially
represents what a person is inhaling. We do this on gas samples as well as on 8-hour-a-day patterns
that are staggered throughout the work place. We sample different jobs for different periods of time,
so that we have a reasonable idea about the controls we use. In addition, because of a potential for
peaks and because of a potential for the gas to be difficult to grab, and because you cannot have a
charcoal tube in every place, we have developed a policy worldwide where in addition to this kind
of monitoring we will be installing continuous gas Chromatograph multipoint samplers to complement
area monitoring. We then can get a better feel on a continuous basis as to what is happening with
exposure.

_______________
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Q. by A. Tallentire – UK
Bob, you alluded to the phenomenon of stratification, and I understand that there are cycles in

which the EO and billowing gas will be added separately to the vessel. What evidence is there that in
those circumstances stratification of the EO does not occur?
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A. by R.F. Morrissey – USA
I am not sure that I can answer directly, but in the AAMI guideline there is an inter-relationship

between gas injection temperature and the capacity, for example, of the heat exchanger, and primarily
it has to do with ethylene oxide/chlorofluorocarbon mixtures. If the gas is introduced at a low
temperature, you will get fractional distillation, which is a potential problem with EO. Now, we have
situations where in a number of installations there is bulk storage of EO. There is a mixer inside a
large cylinder (a large chamber), and there have been no problems. However, several people have
mentioned that sometimes, if you have a cylinder of an ethylene oxide mixture and it is left
undisturbed for a long period, there may be differential stratification. Normally, where there is a dip
tube that goes to the bottom of the cylinder, this problem is eliminated.
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Comment by A. Tallentire – UK
I was referring to the possibility of stratification in the vessel itself, not in the cylinder.
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A. by R.F. Morrissey – USA
Making the assumption that the gas has been added properly, we have not observed the

phenomenon. Frank Halleck could comment on the subject.
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Comment by F.E. Halleck – USA
This is a common question that comes up many times. We have done extensive studies on this very

issue. In the chamber, you never get stratification with a Freon/ethylene oxide mixture, because the
vapour pressure of the Freon is so much higher than that of ethylene oxide. In most large and small
chambers, using the mixture of Freon and EO, you have heat-up systems, either an expansion tank or
vaporization piping, so that the liquid conversion to the gas stage is almost instantaneous. You should
know, however, that when you use a carbon dioxide mixture with EO and you introduce the carbon
dioxide mixture into the expansion tank, you can get stratification in the expansion tank. This may
carry over into the chamber if you do not allow enough time for the equilibration of the liquefaction to
take place since carbon dioxide vapour pressure is considerably lower than that of ethylene oxide. I
think, we have an engineer here and perhaps he can answer the question. Would he like to comment.
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Comment from the floor
In my experiences, basically in the manufacturing and sterilization of surgical gloves, I saw gas

stratification measured with a gas Chromatograph on cycles having an exposure time longer than 18 to
24 hours. Stratification is proportional to time and is calculated to be about 100 mg/L, decreasing
from the top of the chamber to the bottom of the sterilizer. That is mainly due to the thermal draft
currents within the chamber and also to a lack of proper ventilation blowers that could agitate the gas
mixture and maintain it at a consistent gradient.

_______________
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Q. by L.F. Dodson – Australia
Dr Herrmann, have you done any other epidemiological studies on people who have been exposed

to ethylene oxide in high exposure risk situations? Secondly, what is considered to be the significance
of the chromosomal findings that you describe?
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A. by A.A. Herrmann – USA
We have several studies ongoing, from which the answers will probably be available two to three

years from now. One study is that we will be looking at all sterilizer operators in North America,
only because it is a finite group of people and we are much more likely to be able to track accurately
records that date back to the start of operations. We can look at morbidity and mortality experience in
that group of people. We go back to 1953. However, the group is not in the thousands, it is in the
hundreds. So, as far as the sensitivity of an epidemiology study, if there are problems in three or four
clusters then it would at least raise concern. The study is ongoing and has just been initiated. In the
other study, we are going to track those people during a six-year period, in which a sterilizer was
operating, to look at all the people who ever worked there in that facility. Essentially, other than what
we did earlier in 1980, it was to take a very rough look at all of our sterilizer operators and people
who had high potential exposure, as we knew it then, just to be sure that we did not have a clustering.
We did not want to have the niceties of an epidemiology study interfere with just doing a very rough
cut of the medical records. The rough cut of the medical records did not show us any particular
clustering of problems. We had a scattering of the kind of diseases, you experience in the general
population.
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Q. by L.F. Dodson – Australia
What do you think is the significance of those findings other than that EO does affect

chromosomes?

Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



A. by A.A. Herrmann – USA
Well, there are the sister-chromatid exchanges. Sister-chromatid exchanges (SCE) are avant-

garde, having been around for about five or six years, and it happens to be where a lot of the action is
in terms of research, as it is a fairly easy technique to read a sister-chromatid exchange. There is not
much question that virtually every carcinogen, chemical carcinogen, that has mutagenic capabilities
can increase SCE. Almost every chemical that has this capability has been demonstrated to have had
that capability. It is also thought from a number of different studies that sister-chromatid exchange is a
fairly good evidence of past exposure to certain chemicals, and results can be used for dosimetry. It
has also been looked at as an assay for mutagenic potential of a chemical, if an exposure can move
sister-chromatids around, since you can compare them always with controls. It is impossible to do
this kind of study without having a large number exposed and a large number of controls. However,
you cannot do this study with half a dozen people and half a dozen controls. SCE do not have any
well defined associated health effects, although there are in some chromosomes fragility syndromes,
called Bloom’s Syndrome, from an increased number of sister-chromatid exchanges. This is probably
the only health exception. Concerning aberrations, there is quite a bit of documentation on the
associations of aberrations and health effect, not as cause and effect, but as an association. The most
significant data, of course, are the radiation data from Hiroshima and Nagasaki. This is where we
have seen effects in terms of soft and hard tumours. The aberrations as they relate to health are more
serious than SCE, but who knows, five years from now maybe we may be talking about the same issue
with regard to sister-chromatid exchange.

_______________
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Comment by R.J. DeRisio – USA
In summarizing and closing this part of the session, I would conclude that a protocol exists for the

validation of ethylene oxide cycles and that the AAMI guidelines have gained wide acceptance among
regulatory bodies and manufacturers worldwide. Although strictly not within the scope of the
document, the principles can be applied to hospital sterilization as well.

We have learnt that there are available practical and reliable means to monitor EO exposure in the
worker environment which can be applied by users of EO.

The increasing interest in radiation notwithstanding, ethylene oxide will continue to be used as a
means of sterilizing medical devices. I believe, we will see steps taken to reduce residue levels on
sterilized devices with a concurrent improvement in methods for determination of residue levels

In the area of employee safety, the level of interest and co-operation among industry, hospitals,
associations, and regulatory agencies should result in significant improvements in worker safety.
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DISCUSSION
SESSION V

Q. by J. Lindsay – Australia
I sat with rather rapt amusement listening to Pam Wills. She seemed to me to pour a very large

bucket on some of the sterilization processes used by some of the radiation people. It would seem that
it was, to coin a phrase, rather overkill and overwaste not only of resources but money and manpower
and time. I wonder if somebody on the panel would care to comment.

Also, I have a question for Mr Masefield with regard to the enumeration of organisms after the
sterilization processes. No mention was made of a pre-incubation or pregrowth period for those
organisms that are sublethally damaged. I wonder if, in fact, the data that you have are rather tenuous
in that regard.
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A. by P.A. Wills – Australia
Perhaps, you misunderstood what has been said. Somebody assumed that really there is nobody

validating the use of a dose in Australia. We went through the exercise according to the Code of Good
Manufacturing Practice to show how difficult it was. Hopefully, it will become easier when the
Code is revised in accordance with the International Atomic Energy Agency recommendations. Does
this answer your question?
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Comment by J. Lindsay – Australia
Partly; it just seemed that the radiation processes were too long and unnecessary. You could have

got away with using less time, perhaps less effort, and still have achieved what was wanted.
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A. by P.A. Wills – Australia
Well, the work showed that you really need 2.5 Mrd, except for AAEC lyophilized products.

There are probably a fair number of things in this category.
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Q. by J. Lindsay – Australia
Mr Masefield, I was concerned that when you do enumerations of organisms after radiation

damage you do not have a pre-incubation period for picking up organisms that are sublethally
damaged. It is common to do this in other microbiological processes, and I wonder why it is not done
in radiation analysis. You made no mention of this subject.
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A. by J. Masefield – USA
I did not describe the sterility test. As far as organism recovery is concerned, most medical

devices are inhospitable to nurturing growth of organisms damaged or not. In so far as allowing time
to elapse between incremental dose irradiation and sterility testing, we had not noticed it having an
impact on the results.

_______________
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Q. by E. Haderup – Australia
In view of what we have learnt about ethylene oxide exposure, I am concerned about the

possibility of air-change rates within the CSSD. Should we increase what is a ward air-change rate
of 6-10 air changes an hour to a theatre rate of 15-20 changes an hour? I would appreciate the panel’s
view on this.
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A. by A.A. Herrmann – USA
When you talk about the theatre, are you talking about the workplace outside the environment of

the sterilizer?
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Comment by E. Haderup – Australia
I am asking whether we should increase the air-change rate, that is ventilation, within the CSSD to

what we normally give the theatres, which is about 20 air changes an hour. At the moment, the CSSD
in our establishment is about 6-10 air changes an hour.
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A. by A.A. Herrmann – USA
The control of ethylene oxide is submarine technology; you have to stop leaks, and to stop leaks

from the tank to the jacket, from the jacket to the door, and from the jacket to the outside. Most units
have adequate ventilation systems and it is surprising how you can contain ethylene oxide in the work
environment using properly attached exhaust systems, if you have leak control. It is easy to get down
to less than 5 ppm. I will ask someone else to answer the question on the CSSD environment, as I am
unfamiliar with it.
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A. by F.L. Hebbard – Australia
The Department of Labour and Industry recommends that the safety valve orifice must be taken

two metres above the roof of a building. There have been no recommendations to date to increase air
change.
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Comment by A.A. Herrmann – USA
Johnson & Johnson has a variety of different operations in 24 countries. There are a dozen

sterilizer operations in the United States that use ethylene oxide, and, I guess, we probably have every
size, source, and variety of unit that you could imagine, from liquid in tanks where it vaporizes to
vacuum cycle jacket units of laboratory size, to vacuum cycle units through which you could literally
drive a railway carriage. You need to be a detective with an infrared spectrophotometer and a probe
to check all of these units, the vacuum pumps, the trenches around the units, the joints that connect the
exhaust pumps, etc. You have to make judgments on a basis of potential exposure. Our view is that the
standard in the workplace has to be 1 ppm.

_______________
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Q. by A. Mercieca – Australia
I have a question for Richard DeRisio. Has the FDA finalized acceptable levels of ethylene oxide

residues in products destined for patient use, and if so, are they available?
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A. by R.J. DeRisio – USA
There is at present no work being done. The document that I referred to was published in the

Federal Register as a proposal in 1978. I have mentioned to Jim Whitbourne, co-chairman of the
AAMI Committee working on residual determination, that maybe something will evolve that will
enable a judgment on residue levels. In fact, I am not sure what extraction method is used or
correlated. Granted, levels must have been set on the basis of medical opinion, and there must have
been studies to look at typical levels in devices. If they were published in 1978, the data would be
seven or eight years old, and, of course, since then technology has changed. Any levels would have to
represent what could be determined with methodology that we will develop in the next year or so
from the AAMI Committee. An appropriate residue level is based on scientific review and opinion
on a particular class of device. We will look to health organizations to review the kind of levels that
we are using. It appears that firms are not having a great deal of difficulty meeting the levels in that
proposal, so there has not been a great deal of pressure to change those levels to something more
liberal. On the medical side, they don’t seem to be too high as to be hazardous.

_______________
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Q. by P.T. Doolan – France
My question is to John Masefield. John, in the AAMI B2 Method no counts of organisms are

required. I am sure, I am not the first to remark on this, and I feel that this could have an impact on the
audit frequency. I am interested to know if any consideration has been given to this by the Committee
when developing the guidelines. It seems to me that you chose your words very carefully when you
said that representative samples of the product should be chosen for the fraction-positive testing.
Would you care to comment.
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A. by J. Masefield – USA
Concerning the audit frequency first. Having set the dose, we recommend that you audit your

production frequently. We have discussed whether it should be a quarterly, an annual affair, or
otherwise, and whether we should provide guidelines in this direction. In practice, particularly with
smaller firms that have perhaps not as rigid control over their environment as some of the larger
organizations, when they come to us for advice, we suggest that they sample monthly to commence
with to make sure that the dose that has been set is valid. In such circumstances, we found that there
were no problems. The whole dose-setting method is conservative and you are getting a lot of
overkill. It is the resistant tail of the population that is driving the dose. Resistant organisms do not
seem to appear very often. We get an increase inactual bioburden, but increases seem to be in less
resistant organisms. We, therefore, do have frequent auditing, but it does not seem to be making a lot
of difference.
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Comment by A. Tallentire – UK
I would like to comment and say that in effect you are doing a count when you do the AAMI B2

Method. As I recall, the first fraction-positive corresponds to an average three organisms per item of
a resistant variety and, similarly, the first no-positive corresponds to 0.1 of an organism of a resistant
variety. In reality, therefore, you are doing a count, although you are not doing a bioburden
determination in the normal sense of the word.
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Comment by R.J. DeRisio – USA
We have in the Agency always required bioburden monitoring for any process that involved

changes in bioburden and yet we hear from actual data that large spikes in bioburden population of
more than one order of magnitude might not reflect the overall resistance of the item. What is a matter
for concern is that when we see small manufacturers who have frequent changes in component
suppliers, equipment maintenance and cleaning may not be at a level of those who do not see changes
in a resistant population. There may be variable personnel contamination, as personnel are not as
protected as they are in some other places. We should know at least what are the sources of
contamination of radiation-resistant organisms. If we are to accept that these are at a low level and
are unaffected by typical bioburden fluctuations, we would be more comfortable if we knew the
source, e.g., if the source is common to a particular manufacturing material, or from soil, and so forth.
Mr Masefield mentioned an increased audit frequency using the verification dose which may be a
way to impose more control on a firm that is considering going to dosimetric release using the AAMI
methods. Thus, there will still be monitoring of bioburdens to be consistent.

_______________
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Q. by E.R. Pavillard – Australia
I have a question for Dr Tallentire. In your interesting paper, you discussed wrapping and qualities

of fibres in wrapping for sterilized products. You implied but did not state that trapping on fibres was
associated with some type of electrostatic charge. You said, the microorganisms attach, but you did
not say how, and I presume that an electrical charge may be involved. Is it reasonable to consider that
a sterilizing process might alter the charge on fibres, so that the paper after sterilization did not
exclude or trap particles as well as it did from the tests that were conducted prior to sterilization?
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A. by A. Tallentire – UK
What you infer is correct. The mode of capture of microbial particles as they pass through the

fibre matrix is electrostatic. I think, it would be reasonable to expect the charge possibly to change,
perhaps by heat. I would anticipate that it may not be affected by radiation. Our studies to date have
all been done on unsterilized webbed materials, and it is our intention to do them on sterilized
samples, so as to be able to make comparisons. At some future date we will answer your question.

_______________
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Comment by J. Nygard – USA
I would just like to make two comments on earlier questions. The first concerns medical problems

from ethylene oxide exposure. American Hospital Supply Corporation began a programme in 1976
that included genetic studies and environmental surveys. I understand, they have detected no
abnormalities in those who were exposed to ethylene oxide.

Secondly, with regard to the solubility of ethylene oxide in water, those who have done
considerable survey work with ethylene oxide have found that when they used steam ejectors and
water-sealed vacuum pumps ethylene oxide was solubilized in water, which is reversible in special
conditions. Therefore, anyone with water-sealed vacuum pumps and steam ejectors should be
cautious and suitably vent the area.

_______________
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Comment by R.F. Morrissey – USA
During the Symposium, we have talked about bioburden and overkill and comments were made

about controlling the process, or refining the process, or reducing the process, whether it was
ethylene oxide or radiation. I would not want our comments to be misinterpreted as decreasing the
sterility assurance level What this forum has shown is that there are a variety of new methods and
new technologies from which we are obtaining new information that permits us to optimize
sterilization processes. The majority of the ethylene oxide processes, for instance, were designed for
overkill. The cycle time was set independent of the nature of the bioburden. It must not be interpreted
as cutting corners or reducing the quality. It is by advancing our knowledge of microbial resistance
and process variability and control that permits process optimization.
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packaging 156–157

Spore resistance 155–158, 162–186 (see also Spores, heat resistance)
Spore/s (see also Biological indicators)

biophysical state 169–182
carriers 155–156
packaging 156–158
formers, on cotton balls, 274, 275, 282
for monitoring heat sterilization 215
heat resistance, mechanisms of 168

theories 163
protoplast, biophysical state of 169
resistance/resistant 162–186, 271 (see also B. pumilus)

biophysical state of 176–181
structure and composition 162
water, state of 169

Staphylococcus aureus
as a test organism 233

Staphylococcus saprophyticus
as a test organism 233

Steam sterilization 224 (see also Heat sterilization)Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



B. stearothermophilus, as an indicator 155, 160, 192, 215
F value 217
in hospitals 224
indicators 155
validation of 221

Sterile manufacture
in hospital pharmacies 82–89

Sterility (see also Contamination, Sterility Assurance, Sterility maintenance, Sterility testing,
Sterilization)
and the law 132–138
assurance 119–127, 214, 264

Microbiological Suvival Index 125
monitoring of 187 (see also Sterility testing)

concept of 126
definition 80, 124
levels of, in radiation sterilization 281–283, 297
monitoring of 152–154, 187–194
test for, Australia 7
tests for, Guidelines on 192

Sterility Assurance Level (SAL)
definition 311
dose setting 297–299, 302–304
microbial survival probabilities, assumptions for 122

Sterility maintenance, packaging materials 230–246
Sterility testing 7–9, 12, 187–194 (see also Sterility, monitoring of)

direct inoculation 215
finished product 41, 193
media, use of [see Medium(a), specific names]
overkill 214
packaging materials 232–246
regulations, Australia 5–10, 192

Sterilization (see also specific methods)
biological control 147–151
by autoclaves 104
dating for 38
education 128–131, 226
ethylene oxide

advantages of 317, 339
disadvantages of 318
hazards 321
process development and validation 202–205, 322–338
residue limits 319–320

gamma, process development and validation 269, 289Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



heat, process development and validation 214–222
hospital 79–92, 93–102, 103–110, 223–229
monitoring (see Sterilization, controls)
probability of 120
radiation controls, role of IAEA 258–268
regulations

in Australia 5–10, 195
in Europe 35–68
in France 58–64
in Italy 42–48
in Spain 44–49
in Sweden 65–68
in United Kingdom 50–53
in United States 11–34

steam 215, 216
time as process parameter, heat 216–219

Sterilization cycle
data-based design 20
development of

ethylene oxide 324
heat 214

requirements 36
Sterilization Research and Advisory Council of Australia 87

New South Wales Branch 129, 226
Sterilizer Computer Operating Terminals, in ethylene oxide sterilization 324
Surgical dressings (see Dressings, surgical)
Surgical instruments

handling of 98

Test/s
for sterility or standard 7
for inhibitory substances 8
of equipment, steam sterilization 221
of penetrability [see Packages(ing), tests of penetrability]
of sterility (see Sterility testing)
on diluents and solvents 8

Thermal resistance fraction (see Heat sterilization)
Tort of negligence 135
Trade Practices Act 132, 137, 138

United States Pharmacopeia (USP)
‘bandages’ use of word 126
Sterility Tests of 12

USP (see United States Pharmacopeia)
Single user license provided by AAMI. Further copying, networking, and distribution prohibited.



Validation, sterility process
definition 332
for ethylene oxide sterilization 20–25, 332–336
for heat sterilization 221
for radiation sterilization 271–272
medical devices 19–34
testing equipment, steam sterilization 221

Westmead Centre 108
Whitby/Gelda distribution resistances 296 (see also Dose setting methods)

Yeasts
in cotton balls 274, 275

Yersinia spp.
dressings contaminated by 188

z value
bioburden determination of 217
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* The products are defined in the Guide to Good Manufacturing Practice for Sterile Medical Devices
and Surgical Products (HMSO 1981). They do not include pharmaceutical products. Those
manufacturers of sterile medical devices and surgical products who are licensed under the Medicines
Act are asked to register for completeness. It is not intended that this new scheme will duplicate
inspection requirements in respect of licensed products.
** It is recognised that for practical reasons it may not be possible for companies to follow certain
requirements in the Guide for appreciable periods of time. This will not necessarily prevent
registration being granted provided that plans and interim measures can be agreed.
* MANUFACTURER
Any agency involved in the conversion of raw material into parts, and parts into finished products.
For the purposes of the registration scheme major stages of manufacture are identified as:
1. Conversion of raw materials into definable components, sub-assemblies, parts.
2. Production of or assembly from components, sub-assemblies and parts of the finished unsterile,

unpackaged product/device.
3. Packaging.
4. Sterilization.

Only agencies carrying out at least stages 2 and 3 for some products are considered as manufacturers.
(1) “Package” is defined as a unit consisting of one or several articles presented in the same
wrapping for irradiation.
(2) The reference dosimeters are calibrated by the “Service Central de Protection contre les
Rayonnements Ionisants” (Central Service for Protection from Ionizing Radiation).
(1) Biological indicators prepared with Bacillus pumilus E 601 or Bacillus sphaericus C1A
contaminated with 108 spores and standard inactivation curves can be obtained from the “laboratoire
National de Reference Microbiologique”.
1. National Bacteriological Laboratory, S-105 21 Stockholm, Sweden.
2. International Atomic Energy Agency, Wagramerstrasse 5, A-1400 Vienna, Austria.
Translation accepted by the Department of Drugs, National Board of Health and Welfare 1977-10-10.
* Trade Mark
* Trade Mark
* Trade Mark
* Trade Mark
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